6-Substituted 2-azabicyclo[2.2.1]hept-5-enes by nitrogen-directed radical rearrangement: synthesis of an epibatidine analogue with high binding affinity at the nicotinic acetylcholine receptor \dagger

David M. Hodgson, ${ }^{* a}$ Christopher R. Maxwell, ${ }^{a}$ Richard Wisedale, ${ }^{a}$ Ian R. Matthews, ${ }^{b}$ Kate J. Carpenter, ${ }^{c}$ Anthony H. Dickenson ${ }^{c}$ and Susan Wonnacott ${ }^{d}$
${ }^{a}$ Dyson Perrins Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, UK OX1 3QY
${ }^{b}$ Syngenta, Jealott's Hill International Research Centre, Berkshire, UK RG42 6EY
${ }^{c}$ Department of Pharmacology, University College London, Gower Street, London, UK WClE 6BT
${ }^{d}$ Department of Biology and Biochemistry, University of Bath, Bath, UK BA2 7AY

Received (in Cambridge, UK) 17th August 2001, Accepted 26th October 2001
First published as an Advance Article on the web 15th November 2001

Base-induced isomerisation of epoxide $\mathbf{1 3}$ gives an azanortricyclanol $\mathbf{1 7}$ which is a precursor for a novel free-radical induced rearrangement to 6 -substituted 2 -azabicyclo[2.2.1]hept-5-enes 28-31. Compound $\mathbf{3 1}$ undergoes selective exo-face hydrogenation to give the 6 -substituted 2-azabicyclo[2.2.1]heptane 33 (structure confirmed by X-ray crystallographic analysis). Deprotection of $\mathbf{3 3}$ gives epibatidine analogue $\mathbf{2}$ which has been shown to bind with high affinity at rat brain nicotinic acetylcholine receptors.

Introduction

In 1992 Daly and co-workers reported the isolation and structural elucidation of the alkaloid epibatidine 1. ${ }^{1}$ Epibatidine has attracted considerable attention from the scientific community due to its novel structure combined with the fact that it is a highly potent non-opioid analgesic nicotinic acetylcholine receptor (nAChR) agonist. ${ }^{2}$ Unfortunately, epibatidine 1 is toxic or even lethal at doses only slightly higher than its effective analgesic dose. However it is a significant therapeutic lead in the important search for nAChR modulators having a wider separation between antinociceptive and toxic effects. ${ }^{3}$ In this context we considered a structurally interesting target would be endo-6-(6-chloropyridin-3-yl)-2-azabicyclo[2.2.1]heptane 2, since it represents an isomer of epibatidine in which the nitrogen in the rigid bicyclo[2.2.1]heptyl framework is translocated from the 7 - to the 2 -position but maintains the same connectivity and similar relative orientation to the chloropyridyl substituent. We envisaged the epibatidine analogue 2 being derived from exo-selective hydrogenation of a 6substituted 2-azabicyclo[2.2.1]hept-5-ene $\mathbf{3}$ and detail here our results on a method to prepare such systems, and the synthesis and biological studies of $\mathbf{2}$. ${ }^{4}$

The 2-azabicyclo[2.2.1]heptyl ring system can be most easily prepared by an aza Diels-Alder reaction using cyclopentadiene. ${ }^{5}$ However, at the outset of our work a regiocontrolled access to 6 -substituted systems was not available. Our strategy (Scheme 1) employs a rearrangement via lithiation of an

[^0]achiral epoxide ($\mathbf{4}$ to 5) (making it amenable to asymmetric synthesis by enantioselective deprotonation), ${ }^{6}$ followed by a radical rearrangement (6 to 7). A related radical rearrangement (8-aza- to 6 -azabicyclo[3.2.1]oct-2-en-7-yl radical) was reported by Rigby and Pigge in $1996 .{ }^{\circ}$

Results and discussion

In order to examine this chemistry, a synthesis of the achiral epoxide $\mathbf{1 3}$ was required (Scheme 2). The potential precursor of

Scheme 2 Reagents and conditions: i, $6 \% \mathrm{Na}-\mathrm{Hg}, \mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{MeOH}$, $-10{ }^{\circ} \mathrm{C}$ to $25{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$; ii, Oxone, Na_{2} EDTA, acetone, $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}$, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 48 \mathrm{~h}$.
epoxide 13, alkene 12, was known (albeit protected as the methyl carbamate) from the studies of Vogel and co-workers. ${ }^{8}$ We focused on the Boc derivative $\mathbf{1 2}$ in order to ensure compatibility in the base-induced epoxide rearrangement and
because of the relative ease of deprotection. The method developed by Vogel involves cycloaddition of protected pyrrole with an arylsulfonyl-substituted acetylene to give the diene 8 ($\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$), followed by hydrogenation of the lesssubstituted olefin and desulfonylation of the resultant vinyl sulfone $9\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}\right) .{ }^{8}$ Although we initially adapted this route to the Boc-protected series, ${ }^{9}$ we observed (similarly to others) ${ }^{10}$ that the sodium amalgam-mediated desulfonylation of vinyl sulfone $9(\mathrm{R}=\mathrm{Boc}$) was low yielding ($\sim 30 \%$ in our hands). However, we found that sodium amalgam-mediated desulfonylation of the related known alkene $\mathbf{1 0}$ [easily available from diene $\mathbf{8}(\mathrm{R}=\mathrm{Boc})$ using $\left.\mathrm{NaBH}_{4}\right]^{11}$ was slightly more satisfactory in terms of yield (up to 62% of alkene 12). During the course of our studies, alternative methods for the synthesis of alkene $\mathbf{1 2}$ were reported which, although adding additional steps, achieve desulfonylation from vinyl sulfone 9 without the use of sodium amalgam. ${ }^{12}$

A by-product isolated in the desulfonylation of alkene $\mathbf{1 0}$ was subsequently identified as the known 2-azabicyclo[2.2.1]heptene 11 (18%, Scheme 2). ${ }^{13}$ By-product alkene 11 may be derived from homolysis of the intermediate aryl radical anion in desulfonylation ${ }^{14}$ and radical cyclisation to azatricyclic radical $6(\mathrm{R}=\mathrm{H})$, followed by cyclopropyl carbinyl radical ring-opening to $7(\mathrm{R}=\mathrm{H})$. The latter process provides encouragement for the radical rearrangement that we wished to investigate. Support for formation of the azatricyclic radical $6(\mathrm{R}=\mathrm{H})$ as an intermediate in this mechanism is found in the sodium amalgam-mediated desulfonylation of a 5 -phenyl-sulfonyl-substituted 7 -azabicyclo[2.2.1]heptene 14, which has been previously observed to give approximately equal proportions of the simple reduced 7 -azabicyclo[2.2.1]heptene $\mathbf{1 5}$ together with 5 -phenylthio-substituted 3 -azatricyclo[2.2.1.0 $\left.0^{2,6}\right]$ heptane 16 (Scheme 3), ${ }^{15}$ the latter presumably being isolated due to the radical stabilising effect of the phenylthio substituent.

Scheme 3
Contemporaneously with our own studies, a by-product was reported in desulfonylation of the methyl carbamate system analogous to $\mathbf{1 0}$, and this by-product was tentatively characterised as N-methoxycarbonyl-6-azabicyclo[3.3.1]hept-2-ene, ${ }^{16}$ although the data provided, together with our studies reported herein (and elsewhere recently), ${ }^{11}$ would suggest that this byproduct should be reassigned as a 2 -azabicyclo[2.2.1]hept-5-ene.

Epoxidation of the alkene $\mathbf{1 2}$ using MCPBA buffered with $\mathrm{Na}_{2} \mathrm{HPO}_{4}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 20 \mathrm{~h}\right)^{18}$ afforded the desired epoxide 13 (Scheme 2) in only 41% yield after a difficult purification. Peracetic acid in the presence of $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}\right.$, $48 \mathrm{~h})^{19}$ gave a similar yield of epoxide $13(42 \%)$. Use of freshly prepared dimethyldioxirane ${ }^{20}(0.1 \mathrm{M}$ in acetone; 6 equiv., $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 36 \mathrm{~h}$) gave a clean reaction, but obtaining significant conversion was problematic (a maximum of 25% conversion was observed). In situ methods of generating dimethyldioxirane are now known to be more efficient, although a phase transfer catalyst is required. ${ }^{21}$ Treatment of the alkene $\mathbf{1 2}$ with Oxone, $\mathrm{NaHCO}_{3}, \mathrm{Bu}_{4} \mathrm{NHSO}_{4}$ and Na_{2} EDTA in acetone$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{H}_{2} \mathrm{O}$ resulted in a highly satisfactory 76% yield of N-Boc-azanorbornene \ddagger oxide 13. As found for the epoxidation of other bicyclo[2.2.1] derivatives, ${ }^{22}$ the epoxidation occurred exclusively from the exo face, as determined by ${ }^{1} \mathrm{H}$ NMR NOE studies (irradiation at the chemical shift corresponding to the

[^1]epoxide CH's produced enhancement at the chemical shift assigned for the endo-protons of the CH_{2} 's). An alternative route to epoxide 13 was briefly examined. Epoxidation (49\%) of alkene 10 (MCPBA, $\mathrm{Na}_{2} \mathrm{HPO}_{4}$) followed by sodium amalgammediated desulfonylation (30%) did give the epoxide 13, but the poor yields in this sequence led us to prefer the sequence of desulfonylation of alkene $\mathbf{1 0}$ followed by epoxidation using dimethyldioxirane generated in situ.

On reaction with LDA, epoxide 13 underwent a similar lithiation-transannular C-H insertion (4 to 5, Scheme 1) to that originally observed by Crandall with exo-norbornene oxide. ${ }^{23}$ In the present case, azanortricyclanol§ $\mathbf{1 7}$ was obtained (52%, Scheme 4) and the spectral data compared well with those for the related azatricycle $\mathbf{1 6}^{15 b}$ (Scheme 3). The reaction of epoxide $\mathbf{1 3}$ with LDA was found to be most effective if carried out at $0{ }^{\circ} \mathrm{C}$, although it was important to quench the reaction immediately or the yield of azanortricyclanol 17 was diminished (stirring over 10 h resulted in 21% yield of $\mathbf{1 7}$).

Scheme 4 Reagents and conditions: i, LDA, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 5 \mathrm{~min}$; ii, KH , THF, $0^{\circ} \mathrm{C}, 20 \mathrm{~min}$, then $\mathrm{CS}_{2}, 0^{\circ} \mathrm{C}, 10 \mathrm{~min}$, then MeI, 20 min ; iii, $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$, toluene, $100^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

Formation of the xanthate ester of azanortricyclanol 17 and radical deoxygenation ${ }^{24}$ by heating with $\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{AIBN}$ in toluene gave the 2-azabicyclo[2.2.1]heptene $\mathbf{1 1}^{13}(60 \%)$ as the only isolated product (Scheme 4). A careful analysis of the ${ }^{1} \mathrm{H}$ NMR of the crude material, using comparisons with a reference sample of alkene $\mathbf{1 2}$ and the predicted chemical shifts of $\mathbf{1 7}$ $(\mathrm{OH}=\mathrm{H})$, did not indicate the presence of either of these latter two compounds. Radical reduction of norbornenyl bromide 18 or nortricyclyl bromide 21 is known to produce the same ($\sim 1: 1$) mixture of norbornene 19 and nortricyclene 20 (Scheme 5). ${ }^{25}$ In the present case the radical $7(\mathrm{R}=\mathrm{H})$ which leads to the

2-aza alkene $\mathbf{1 1}$ may be strongly preferred due to a stabilising effect of the radical by the NBoc group ${ }^{26}$ and/or a larger $\mathrm{CH}-\mathrm{N}-\mathrm{CH}$ angle in 7 (compared with 6) which promotes amide-type resonance (vide infra). ${ }^{27}$

So as to provide a way to introduce substituents in order to see their effect on the radical rearrangement [6 to $7(\mathrm{R}=$ alkyl, aryl)], azanortricyclanol $\mathbf{1 7}$ was oxidised (81%) to the ketone 22 (Scheme 6). Subsequent to our studies, ${ }^{4}$ Plumet and co-workers

Scheme 6 Reagents and conditions: i, $(\mathrm{CO})_{2} \mathrm{Cl}_{2}$, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78$ ${ }^{\circ} \mathrm{C}, 20 \mathrm{~min}$, then $\mathrm{NEt}_{3} ;$ ii, LiHMDS, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$
have reported an interesting route to ketone 22 (45%) from epoxy sulfone $\mathbf{2 3}$ using LiHMDS (Scheme 6). ${ }^{28}$ With LDA or LiNEt_{2} and epoxy sulfone 23, low yields ($\sim 30-37 \%$) of azanortricyclanol $\mathbf{1 7}$ were obtained and ketone $\mathbf{2 2}$ was not
§ The IUPAC name for azanortricyclanol is 3-azatricyclo[2.2.1.0 ${ }^{2,6}$]-heptan-5-ol.
observed. Although not currently having the potential to be an enantioselective process, ${ }^{6}$ the route to ketone 22 reported by Plumet is noteworthy because it proceeds in four steps from commercially available starting materials [via addition of Bu'OOLi to alkene $9(\mathrm{R}=\mathrm{Boc})$], with the additional benefit of avoiding the use of sodium amalgam.

Addition of BuLi and PhLi to the ketone 22 gave epimeric mixtures (inconsequential) of tertiary alcohols 24 (70%) and $25(88 \%)$ respectively, which were best deoxygenated by the procedure of Dolan and MacMillan (Scheme 7). ${ }^{29}$ Smooth

Scheme 7 Reagents and conditions: i, RLi, THF- $\mathrm{Et}_{2} \mathrm{O},-78^{\circ} \mathrm{C}(1 \mathrm{~h})$ to $25^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii, $\mathrm{ClCOCO}_{2} \mathrm{Me}, \mathrm{DMAP}, \mathrm{MeCN}, 25^{\circ} \mathrm{C}, 30 \mathrm{~min}$; iii $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, toluene, $100^{\circ} \mathrm{C}, 45 \mathrm{~min}$.
rearrangement to give the 6 -substituted 2 -azabicyclo[2.2.1]-hept-5-enes 28 and 29 (64% and 61%) was observed, despite the potential additional radical stabilising effects present in the supposed intermediates 6 ($\mathrm{R}=$ alkyl, aryl) compared with 6 $(\mathrm{R}=\mathrm{H})$. The presence of a stabilising group adjacent to the intermediate radical $6(\mathrm{R}=$ alkyl, aryl) could potentially have slowed radical cyclisation and hence promoted formation of 5 -substituted 3 -azatricyclo[2.2.1.0 $\left.{ }^{2,6}\right]$ heptanes (i.e. deoxygenation without rearrangement).

In order to access the desired 2-azabicyclic analogue of epibatidine 2, alkene hydrogenation would be required following rearrangement. Literature precedent suggested that a pyridyl chlorine substituent might be cleaved under typical hydrogenation conditions. ${ }^{30}$ Indeed, several syntheses of epibatidine requiring a late-stage alkene reduction have used methoxypyridyl functionality, with subsequent conversion to chloropyridyl using POCl_{3}-DMF. ${ }^{31}$ Thus, initially the methoxypyridyl alkene 30 was prepared (Scheme 7).

Hydrogenation of the methoxypyridyl alkene 30 (in EtOAc, since $\mathbf{3 0}$ is unstable to protic solvents) gave the desired endo-6-substituted-2-azabicyclo[2.2.1]heptane $\mathbf{3 2}$ exclusively in 78% yield (Scheme 8). Careful analysis by TLC and examination of the ${ }^{1} \mathrm{H}$ NMR of the crude isolate suggested only one product was formed in the reduction, and NOE studies indicated that the pyridyl substituent was syn to the NBoc group (see Experimental section). However under $\mathrm{POCl}_{3}-\mathrm{DMF}$ conditions, only decomposition of 2-azabicyclo[2.2.1]heptane $\mathbf{3 2}$ was observed. The synthesis and hydrogenation $\left(10 \% \mathrm{Pd} / \mathrm{C}, 1 \mathrm{~atm} \mathrm{H}_{2}\right)$ of the chloropyridyl alkene $\mathbf{3 1}$ was therefore carried out, with careful monitoring of the hydrogenation. The loss of the chloro substituent was not as facile as expected on the basis of related literature examples, ${ }^{30}$ and a reaction time of 3 h led to complete reduction of the double bond, selectively from the exo face to give 2 -azabicyclo[2.2.1]heptane 33 in 96% yield, and importantly without loss of chlorine. The stereochemistry obtained from hydrogenation was confirmed by X-ray crystallographic analysis of 2-azabicyclo[2.2.1]heptane $\mathbf{3 3}$ (Fig. 1).

The X-ray structure also indicates planarity of the 2azabicyclic nitrogen. Nitrogen atoms in amides are believed to

Scheme 8 Reagents and conditions: i, $\mathrm{H}_{2}(1 \mathrm{~atm}), 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc}$, $25^{\circ} \mathrm{C}, 2-3 \mathrm{~h}$ (48 h for 34); ii, TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Fig. 1 Molecular structure of 2-azabicyclo[2.2.1]heptane 33 (thermal ellipsoids are at the 50% level).
be planar-trigonal due to conjugation with the carbonyl group. ${ }^{27}$ In contrast, 7 -azabicyclo[2.2.1]heptanes are known to have a more pyramidal amide nitrogen. ${ }^{27}$ The increased planarity in 2-azabicyclo[2.2.1]heptanes could promote greater amide type resonance compared to 7 -azabicyclo[2.2.1]heptanes (and probably 3-azatricyclo[2.2.1.0 $\left.{ }^{2,6}\right]$ heptanes). Stabilisation by amide type resonance could therefore favour the rearrangement from the 3 -azatricyclo[2.2.1.0 $0^{2,6}$]heptane radical $\mathbf{6}$ to the 2-azabicyclo[2.2.1]heptane radical 7 .

The face selectivity in the hydrogenation of 2-azabicyclo[2.2.1]heptenes $\mathbf{3 0}$ and $\mathbf{3 1}$ is higher than that observed in the related 7 -azabicyclo[2.2.1]heptene systems. For example, a $4: 1$ ratio of endo-exo isomers was observed by Fletcher and coworkers in their synthesis of epibatidine. ${ }^{32}$ The higher selectivity observed in our system is possibly due to increased steric hindrance from the Boc protecting group, as well as from the ring methylenes of the azabicycle. TFA deprotection of 2-azabicyclo[2.2.1]heptane $\mathbf{3 3}$ gave the target epibatidine analogue $\mathbf{2}$ in 93% yield (Scheme 8). The des-chloro analogue 35 was also prepared for biological testing by dechlorination of 2-azabicycle 33 ($10 \% \mathrm{Pd} / \mathrm{C}, 1 \mathrm{~atm} \mathrm{H}_{2}$, EtOAc, 2 days, 50% yield) followed by TFA deprotection (37% yield, unoptimised).

In 1998 Maier and co-workers reported the selective preparation of the 5-exo-substituted-2-azabicyclic analogue 36, in which the chloropyridyl substituent was introduced by a reductive Heck coupling with alkene 11. ${ }^{13}$ More recently, Malpass and Cox have also reported the synthesis of 2 -azabicyclo[2.2.1]heptane epibatidine analogues. ${ }^{33,34}$ They found that the reductive Heck reaction reported by Maier in fact gave a $55: 45$ mixture of 5 - and 6 -exo-substituted-azabicycles 36 and 37, respectively. ${ }^{33}$ Malpass and Cox also synthesised the 5and 6 -endo-substituted-2-azabicyclo[2.2.1]heptanes $\mathbf{3 8}$ and $\mathbf{2}$ respectively. ${ }^{34}$ Their strategy proceeded via hydroboration of 2-azabicyclo[2.2.1]hept-5-ene 11 ($\mathrm{Boc}=\mathrm{Z}$), which proceeded with low regioselectivity $\left(36: 64^{34 a}\right.$ or $45: 55^{34 b}$ in favour of hydroboration at the 6 -position). A strategy similar to that of Malpass and Cox to $\mathbf{2}$ was recently outlined by Dart and co-workers. ${ }^{35}$

Biological studies

Among the numerous neuronal nAChR subtypes, the $\alpha 4 \beta 2$ receptor is the predominant central nervous system (CNS) receptor subtype exhibiting high affinity for nicotine, and it has been suggested that $\beta 2$-containing nAChRs (likely $\alpha 4 \beta 2$) may play a fundamental role in mediating several important physiological processes including cognition, neurotransmitter release, and antinociception. Therefore, ligands that selectively bind and activate $\alpha 4 \beta 2$ receptors could potentially provide novel therapeutics for the treatment of a variety of debilitating CNS disorders such as Alzheimer's disease, as well as the management of pain. ${ }^{3,35}$ Analogue 2 has recently been shown to display subnanomolar binding affinity ($K_{\mathrm{i}}=0.032 \mathrm{nM}$) for $\alpha 4 \beta 2$ receptors $\{$ where binding affinity was determined by measuring the displacement of $\left[{ }^{3} \mathrm{H}\right]-(-)$-cytisine from a preparation of whole rat brain\}, ${ }^{35}$ which is a 30 -fold increase in binding affinity over S-nicotine. This makes 2 one of the few epibatidine analogues for which a study has shown binding affinity at least as high as (actually marginally higher) than (- -epibatidine $\mathbf{1}$ (for which $K_{\mathrm{i}}=0.04 \mathrm{nM}$) at $\alpha 4 \beta 2$ receptors. ${ }^{3,35}$ During the review process of the current paper, Malpass and co-workers also reported high binding affinity with analogue $2\left(K_{\mathrm{i}}=0.045 \mathrm{nM}\right.$; for (-)epibatidine 1: $K_{\mathrm{i}}=0.019 \mathrm{nM}$) in competition assays against $\left[{ }^{3} \mathrm{H}\right]-(-)$-nicotine. ${ }^{34 b}$

In our own studies, binding affinity was measured in competition binding assays using $\left[{ }^{3} \mathrm{H}\right]$-epibatidine to label nicotinic binding sites in rat brain P2 membranes. Analogue 2 and des-chloro analogue 35 both displayed lower binding affinity ($K_{\mathrm{i}}=0.22 \mathrm{nM}$ and $K_{\mathrm{i}}=0.7 \mathrm{nM}$ respectively) than epibatidine $\mathbf{1}$ $\left(K_{\mathrm{i}}=0.026 \mathrm{nM}\right) . \dagger$ The lower affinity, relative to epibatidine 1, observed in the present study is likely to reflect the fact that $\left[{ }^{3} \mathrm{H}\right]$-epibatidine will label both $\alpha 4 \beta 2$ and $\alpha 3 \beta 2^{*}$ subtypes of nAChR under the conditions used for the competition assays. ${ }^{36}$ This suggests that 2 may be more discriminating than epibatidine with respect to nAChR subtypes. In the mouse hot plate assay, ${ }^{37}$ full efficacy of analogue 2 relative to epibatidine was found at a dose of $0.062 \mathrm{mmol} \mathrm{kg}^{-1}$. At lower doses, analogue 2 failed to show statistically significant activity. The compound was also tested in the rat hot box model. ${ }^{38}$ Seizures were observed at a dose of 0.62 mmol kg -1 , intraperitoneal and no statistically significant analgesic effects were noted at a dose 10 -fold lower ($0.062 \mathrm{mmol} \mathrm{kg}{ }^{-1}$).

In contrast to nicotine and anatoxin-a, the enantiomers of epibatidine $\mathbf{1}$ have surprisingly been shown to be approximately equipotent. This could be explained by the relative space occupied by the bicyclic ring of the two enantiomers when the drug binds to the receptor. ${ }^{39}$ An illustration of this is shown in Fig. 2, where the two enantiomers are depicted so that both nitrogens (considered to be important in binding) are in the same plane and aligned vertically.

Analogue 2

Fig. 2

However, for analogue 2, the azabicyclic portion of the enantiomers appears to have a very different spatial area and this suggests a potential difference in activity (Fig. 2). In order to begin to probe this aspect, the enantiomers of 2-azabicyclo[2.2.1]heptane 33 were separated by chiral HPLC (see Experimental) and individually deprotected with TFA to give the epibatidine analogues $(+)-\mathbf{2}$ and (-)-2. The individual enantiomers were evaluated in electrophysiological studies. $\dagger^{3 b, 40}$ Like epibatidine $\mathbf{1}$ and (R)-5-(azetidin-2-yl-methoxy)-2-chloropyridine (ABT-594), ${ }^{3 b}$ (+)-2 was effective at reducing pain related activity in the anaesthetised rat, with no effect on non-noxious inputs. Interestingly (-)-2 was ineffective, suggesting that either (-)-2 does not bind or it is too weak to activate and then desensitise the receptor. Further studies are required to help clarify this intriguing latter issue.

In summary, this work demonstrates the strategic utility of combining base induced epoxide rearrangements and free radical rearrangements, providing a novel entry into the 2 azabicyclo[2.2.1]heptenyl system and, in particular, an epibatidine analogue with high binding affinity at $\alpha 4 \beta 2$ subtype nAChRs. The process demonstrates a new approach to the 2-azabicyclo[2.2.1]heptyl ring system, which uses a nitrogen atom to promote and guide cyclopropane ring opening. Extensions of this principle to addition reactions, ${ }^{17}$ different ring systems and manipulation of the adducts towards other targets of biological interest, are under investigation.

Experimental

General details

All reactions requiring anhydrous conditions were conducted in flame- or oven-dried apparatus under an atmosphere of argon. Syringes and needles for the transfer of reagents were dried at $140^{\circ} \mathrm{C}$ and allowed to cool in a desiccator over $\mathrm{P}_{2} \mathrm{O}_{5}$ before use. Ethers were distilled from sodium benzophenone ketyl; (chlorinated) hydrocarbons, amines and DMF from CaH_{2}. Internal reaction temperatures are reported unless stated otherwise. Reactions were monitored by TLC using commercially available glass-backed plates, pre-coated with a 0.25 mm layer of silica containing a fluorescent indicator (Merck). Organic layers were dried over MgSO_{4} unless stated otherwise. Column chromatography was carried out on Kieselgel $60(40-63 \mu \mathrm{~m})$. Light petroleum refers to the fraction with bp $40-60^{\circ} \mathrm{C} .[a]_{\mathrm{D}}$ Values are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. IR spectra were recorded as thin films unless stated otherwise. Peak intensities are specified as strong (s), medium (m) or weak (w). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra
were recorded in CDCl_{3} unless stated otherwise with Varian Gemini 200, Bruker AC200, Bruker WM250, JEOL GSX270, Bruker WH300, JEOL EX400, Bruker AM500 or Bruker AMX500 spectrometers. Chemical shifts are reported relative to $\mathrm{CHCl}_{3}\left[\delta_{\mathrm{H}} 7.26, \delta_{\mathrm{C}}(\right.$ central line of t) 77.0]. Coupling constants (J) are given in Hz .

2-(tert-Butoxycarbonyl)-2-azabicyclo[2.2.1]hept-5-ene 11^{13} and 7-(tert-butoxycarbonyl)-7-azabicyclo[2.2.1]hept-2-ene $\mathbf{1 2}^{10}$
Freshly prepared $6 \% \mathrm{Na}-\mathrm{Hg}^{41}(100 \mathrm{~g})$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}(40 \mathrm{~g}$, $0.28 \mathrm{~mol})$ were added to a stirred solution of alkene $\mathbf{1 0}^{11}(10 \mathrm{~g}$, 29 mmol) in anhydrous $\mathrm{MeOH}\left(250 \mathrm{~cm}^{3}\right)$ at $-10{ }^{\circ} \mathrm{C}$ under argon. The reaction mixture was warmed to $25^{\circ} \mathrm{C}$ over 3 h , then water $\left(10 \mathrm{~cm}^{3}\right)$ was added and the reaction mixture filtered. The filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \times 75 \mathrm{~cm}^{3}\right)$ and the organic extracts combined, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent evaporated under reduced pressure. The residue was purified by column chromatography ($20 \% \mathrm{Et}_{2} \mathrm{O}$-light petroleum). First to elute was alkene 12, a clear colourless oil $(3.5 \mathrm{~g}, 62 \%) ; R_{\mathrm{f}}\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$-light petroleum) $0.63 ; v_{\text {max }} / \mathrm{cm}^{-1}$ $2977 \mathrm{~m}, 1704 \mathrm{~s}, 1365 \mathrm{~s}, 1285 \mathrm{~m}$ and $1160 \mathrm{~m} ; \delta_{\mathrm{H}}(200 \mathrm{MHz})$ $6.21(2 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{CH}), 4.65(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}), 1.83(2 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J 8.0,2 \times \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right), 1.39\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right)$ and $1.09(2 \mathrm{H}, \mathrm{d}, J 8.0$, $2 \times \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(50 \mathrm{MHz}) 155.4(\mathrm{C}=\mathrm{O}), 135.0(\mathrm{C}=\mathrm{C}), 134.7$ $(\mathrm{C}=C), 79.6\left(\mathrm{CMe}_{3}\right), 59.5(2 \times \mathrm{CH}), 28.0(3 \times \mathrm{Me})$ and 23.6 $\left(2 \times \mathrm{CH}_{2}\right) ; m / z(\mathrm{CI}) 196\left(\mathrm{M}+\mathrm{H}^{+}, 18 \%\right)$ and $96(\mathrm{M}-\mathrm{Boc}$, 100) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 196.1338. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{2}$ requires M, 196.1338).

Second to elute was alkene 11, a clear colourless oil (1.0 g , 18%); R_{f} ($50 \% \mathrm{Et}_{2} \mathrm{O}$-light petroleum) $0.53 ; v_{\max }($ film $) / \mathrm{cm}^{-1}$ 2977s, 1694s, 1391s, 1365s and 1161s; $\delta_{\mathrm{H}}(500 \mathrm{MHz}$, DMSO, $\left.90^{\circ} \mathrm{C}\right) 6.29(2 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{CH})$, $4.53(1 \mathrm{H}, \mathrm{d}, J 1.5, \mathrm{C}(1) \mathrm{H}), 3.22$ ($1 \mathrm{H}, \mathrm{dd}, J 9.0,3.0, \mathrm{C}(3) \mathrm{H}$ exo $), 3.15(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(4) \mathrm{H}), 2.49(1 \mathrm{H}$, dd, $J 9.0,1.5, \mathrm{C}(3) \mathrm{H}$ endo), $1.51\left(1 \mathrm{H}, \mathrm{d}, J 8.5\right.$, H of $\left.\mathrm{CH}_{2}\right), 1.46$ $\left(1 \mathrm{H}, \mathrm{dd}, J 8.5,1.5, \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right)$ and $1.38\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right) ; \delta_{\mathrm{C}}(125$ MHz) (3:2 mixture of rotational isomers observed) 155.9 $(\mathrm{C}=\mathrm{O}), 136.5(C=\mathrm{C}), 134.4$ and $133.7(\mathrm{C}=C), 79.0\left(C \mathrm{Me}_{3}\right), 61.1$ and $59.9(\mathrm{C} 1), 48.0(\mathrm{C} 3), 46.2$ and $45.8(\mathrm{C} 7), 43.4$ and 42.9 (C4) and $28.4(3 \times \mathrm{Me}) ; m / z(\mathrm{CI}) 196\left(\mathrm{M}+\mathrm{H}^{+}, 4 \%\right), 157(10), 96(27)$ and 66 (100).

exo-2,3-Epoxy-7-(tert-butoxycarbonyl)-7-azabicyclo[2.2.1]heptane 13

Oxone ($63 \mathrm{~g}, 0.10 \mathrm{~mol}$) and Na_{2} EDTA ($200 \mathrm{mg}, 0.50 \mathrm{mmol}$) in water ($260 \mathrm{~cm}^{3}$) was added slowly over 2 h to a vigorously stirred mixture of alkene $12(2.0 \mathrm{~g}, 10 \mathrm{mmol}), \mathrm{NaHCO}_{3}(17 \mathrm{~g})$, $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}(680 \mathrm{mg}, 2.0 \mathrm{mmol})$, acetone ($8.0 \mathrm{~cm}^{3}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(120 \mathrm{~cm}^{3}\right)$. The pH was maintained at $7.8-8.0$ by the addition of NaHCO_{3}. After 24 h further Oxone (30 g) was added. After a further 24 h , the reaction mixture was filtered and the organic layer separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic extracts were combined, dried and evaporated under reduced pressure. Purification by column chromatography ($50 \% \mathrm{Et}_{2} \mathrm{O}$-light petroleum) gave epoxide 13 as a white solid ($1.6 \mathrm{~g}, 76 \%$); $R_{\mathrm{f}}\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$-light petroleum) 0.22 ; mp (from $\mathrm{Et}_{2} \mathrm{O}$) $91-94{ }^{\circ} \mathrm{C}$ (Found: C, 62.8; H, 8.1; N, 6.6. $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{3}$ requires C, $\left.62.5 ; \mathrm{H}, 8.1 ; \mathrm{N}, 6.6 \%\right)$; $v_{\text {max }}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) /$ $\mathrm{cm}^{-1} 2950 \mathrm{~m}, 1695 \mathrm{~s}, 1375 \mathrm{~s}, 1360 \mathrm{~s}$ and $1170 \mathrm{~m} ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 4.36$ ($1 \mathrm{H}, \mathrm{d}, J 4.5, \mathrm{CH}$), $4.21(1 \mathrm{H}, \mathrm{d}, J 4.5, \mathrm{CH}), 3.26(1 \mathrm{H}, \mathrm{d}, J 3.5$, CH-O), $3.23(1 \mathrm{H}, \mathrm{d}, J 3.5, \mathrm{CH}-\mathrm{O}), 1.85-1.76(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right), 1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right)$ and $1.36\left(2 \mathrm{H}, \mathrm{d}, J 7.0,2 \times \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR NOE experiments: irradiation at $\delta 4.36$ saw enhancement at 3.26 and $3.23(4.4 \%), 1.85-1.76(5.0 \%)$ and $1.36(3.1 \%)$; irradiation at $\delta 3.26$ saw enhancement at 4.36 and $4.21(4.3 \%)$ and $1.36(3.5 \%) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}) 158.0(\mathrm{C}=\mathrm{O}), 79.8\left(\mathrm{CMe}_{3}\right), 57.0$ $(\mathrm{CH}-\mathrm{O}), 56.4(\mathrm{CH}-\mathrm{O}), 50.1(\mathrm{CH}), 49.7(\mathrm{CH}), 28.2(3 \times \mathrm{Me})$, $26.0\left(\mathrm{CH}_{2}\right)$ and $25.1\left(\mathrm{CH}_{2}\right) ; m / z(\mathrm{CI}) 212\left(\mathrm{M}+\mathrm{H}^{+}, 8 \%\right)$ and 112 ($\mathrm{M}-\mathrm{Boc}, 100$) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 212.1285. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{3}$ requires $M, 212.1286$).

3-(tert-Butoxycarbonyl)-3-azatricyclo[2.2.1.0 ${ }^{2,6}$]heptan-5-ol 179|

$\mathrm{Bu}^{n} \mathrm{Li}\left(2.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in hexanes; $\left.3.81 \mathrm{~cm}^{3}, 8.00 \mathrm{mmol}\right)$ was added to a stirred solution of diisopropylamine $\left(1.19 \mathrm{~cm}^{3}\right.$, $8.44 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(15 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ under argon. After 1 h , epoxide $13(845 \mathrm{mg}, 4.00 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$ was added over 10 minutes (solution changed from colourless to yellow) and the reaction mixture was stirred for $5 \mathrm{~min} . \mathrm{HCl}\left(1 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in $\mathrm{H}_{2} \mathrm{O} ; 10 \mathrm{~cm}^{3}$) was added and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The organic extracts were combined, washed with brine, dried and the solvent evaporated under reduced pressure. Purification of the residue by column chromatography ($75 \% \mathrm{Et}_{2} \mathrm{O}$-light petroleum) gave azanortricyclanol 17 as a clear colourless oil ($439 \mathrm{mg}, 52 \%$); $R_{\mathrm{f}}\left(60 \% \mathrm{Et}_{2} \mathrm{O}\right.$-light petroleum) $0.11 ; v_{\text {max }} / \mathrm{cm}^{-1} 3404 \mathrm{~s}, 2975 \mathrm{~s}, 1678 \mathrm{~s}, 1417 \mathrm{~s}, 1252 \mathrm{~m}, 1173 \mathrm{~s}$ and $1114 \mathrm{~s} ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 3.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CHOH}), 3.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{C}(4) \mathrm{H}), 3.61(1 \mathrm{H}, \mathrm{t}, J 4.5, \mathrm{C}(2) \mathrm{H}), 1.75(1 \mathrm{H}$, br s, OH$), 1.54$ $\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right), 1.52-1.50(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) \mathrm{H}), 1.47$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 1.44-1.42(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) \mathrm{H})$ and $1.32(1 \mathrm{H}, \mathrm{dt}$, $J 11.0,2.0, \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}) 157.3(\mathrm{C}=\mathrm{O}), 80.2\left(\mathrm{CMe}_{3}\right)$, $75.4(\mathrm{CHOH}), 56.0(\mathrm{C} 4), 31.1(\mathrm{C} 2), 29.7\left(\mathrm{CH}_{2}\right), 28.3(3 \times \mathrm{Me})$, 17.2 (C6) and $14.7(\mathrm{C} 1) ; m / z(\mathrm{CI}) 212\left(\mathrm{M}+\mathrm{H}^{+}, 10 \%\right)$ and 112 (100) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 212.1287. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{3}$ requires M, 212.1287).

2-(tert-Butoxycarbonyl)-2-azabicyclo[2.2.1]hept-5-ene $\mathbf{1 1}^{13}$

A solution of azanortricyclanol $17(100 \mathrm{mg}, 0.47 \mathrm{mmol})$ in THF ($2.5 \mathrm{~cm}^{3}$) was added dropwise to a suspension of KH (35% dispersion in mineral oil; $81 \mathrm{mg}, 0.71 \mathrm{mmol}$) in THF $\left(2.5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under argon. After stirring for 20 min at $25^{\circ} \mathrm{C}$, the solution was re-cooled to $0{ }^{\circ} \mathrm{C}$ and then $\mathrm{CS}_{2}\left(0.04 \mathrm{~cm}^{3}\right.$, $0.67 \mathrm{mmol})$ was added. After 10 min , MeI $\left(0.04 \mathrm{~cm}^{3}\right.$, 0.64 mmol) was added and the reaction mixture stirred for 20 min at $25^{\circ} \mathrm{C}$. Water $\left(5 \mathrm{~cm}^{3}\right)$ was added and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The organic layers were combined, washed with brine, dried and the solvent evaporated under reduced pressure to give the xanthate as a yellow oil (192 mg , characteristic singlet in the ${ }^{1} \mathrm{H}$ NMR at $\delta 2.50$ assigned as SMe). The xanthate was co-evaporated twice with toluene $\left(10 \mathrm{~cm}^{3}\right)$ and used without further purification. AIBN (12 mg) and $\mathrm{Bu}_{3} \mathrm{SnH}\left(0.20 \mathrm{~cm}^{3}, 0.74 \mathrm{mmol}\right)$ in toluene ($1 \mathrm{~cm}^{3}$) were added dropwise over 0.5 h to a solution of the crude xanthate in dry, degassed toluene $\left(20 \mathrm{~cm}^{3}\right)$ at $100^{\circ} \mathrm{C}$. The solvent was then removed under reduced pressure to give a yellow oil which was treated exactly according to the procedure of Curran and Chang ${ }^{42}$ to remove tin by-products. Final purification by column chromatography ($30 \% \mathrm{Et}_{2} \mathrm{O}$-hexane) gave the 2-azabicyclo[2.2.1]hept-5-ene $\mathbf{1 1}$ as a clear colourless oil ($55 \mathrm{mg}, 60 \%, 66 \%$ based on recovered 17).

3-(tert-Butoxycarbonyl)-3-azatricyclo[2.2.1.0 ${ }^{2,6}$]heptan-5-one 22Φ

DMSO ($0.81 \mathrm{~cm}^{3}, 11 \mathrm{mmol}$) was added to a stirred solution of $(\mathrm{COCl})_{2}\left(0.50 \mathrm{~cm}^{3}\right.$, 5.7 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(17 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ under argon. After 10 min , azanortricyclanol $17(1.0 \mathrm{~g}$, $4.74 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(13 \mathrm{~cm}^{3}\right)$ was added dropwise to the reaction mixture. After stirring for 20 min at $-78^{\circ} \mathrm{C}, \mathrm{NEt}_{3}\left(4.0 \mathrm{~cm}^{3}\right.$, 29 mmol) was added and the reaction mixture allowed to warm to $25^{\circ} \mathrm{C}$. Water $\left(2 \mathrm{~cm}^{3}\right)$ was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The organic extracts were combined, washed with brine, dried and the solvent evaporated under reduced pressure. Purification by column chromatography ($50 \% \mathrm{Et}_{2} \mathrm{O}$-light petroleum) gave ketone 22 as a pale yellow oil ($800 \mathrm{mg}, 81 \%$); $R_{\mathrm{f}}\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$-light petroleum) 0.30 ; $v_{\max } / \mathrm{cm}^{-1} 2979-2939,1778 \mathrm{~s}, 1706 \mathrm{~s}, 1478 \mathrm{~m}, 1369 \mathrm{~s}, 1290 \mathrm{~s}, 1254 \mathrm{~s}$, $1171 \mathrm{~s}, 1124 \mathrm{~s}$ and $1097 \mathrm{~s} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 4.33(1 \mathrm{H}, \mathrm{t}, J 4.5$,

[^2]$\mathrm{C}(4) \mathrm{H}), 3.74(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}(2) \mathrm{H}), 2.32(1 \mathrm{H}, \mathrm{t}, J 5.0, \mathrm{C}(6) \mathrm{H}), 2.03$ ($1 \mathrm{H}, \mathrm{d}, J 10.5, \mathrm{H}$ of CH_{2}), $1.76\left(1 \mathrm{H}, \mathrm{dt}, J 10.5,2.0\right.$, H of CH_{2}), $1.60(1 \mathrm{H}, \mathrm{t}, J 5.0, \mathrm{C}(1) \mathrm{H})$ and $1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz})$ $206.0(\mathrm{C}=\mathrm{O}), 155.4(\mathrm{C}=\mathrm{O}), 81.1$ (CMe_{3}), 54.7 (C4), 39.2 (C2), $30.6\left(\mathrm{CH}_{2}\right), 28.2(3 \times \mathrm{Me}), 21.5(\mathrm{C} 6)$ and $17.9(\mathrm{Cl}) ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 227$ $(100 \%), 210\left(\mathrm{M}+\mathrm{H}^{+}, 22 \%\right), 171(43)$ and $110(\mathrm{M}-\mathrm{Boc}, 100)$ (Found: $\mathrm{M}+\mathrm{H}^{+}, 210.1130 . \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires $M, 210.1130$).

3-(tert-Butoxycarbonyl)-5-(n-butyl)-3azatricyclo[2.2.1.0 $0^{2,6}$]heptan-5-ol 24 ब

BuLi ($2.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in pentane; $0.54 \mathrm{~cm}^{3}, 1.08 \mathrm{mmol}$) was added dropwise to a stirred solution of ketone $22(150 \mathrm{mg}$, $0.72 \mathrm{mmol})$ in THF $\left(5 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ under argon. After 1 h , the reaction mixture was allowed to warm to $25^{\circ} \mathrm{C}$. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(10 \mathrm{~cm}^{3}\right)$ was added and the reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The organic extracts were combined, washed with brine, dried and the solvent evaporated under reduced pressure to give a yellow oil. Purification by column chromatography ($50 \% \mathrm{Et}_{2} \mathrm{O}$-light petroleum) gave alcohol 24 as a clear colourless oil ($135 \mathrm{mg}, 70 \%$); $R_{f}\left(\mathrm{Et}_{2} \mathrm{O}\right)$ $0.60 ; v_{\text {max }} / \mathrm{cm}^{-1} 3425 \mathrm{~m}, 2957 \mathrm{~s}, 1679 \mathrm{~s}, 1366 \mathrm{~s}, 1293 \mathrm{~s}, 1177 \mathrm{~s}$ and $1101 \mathrm{~s} ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 3.75-3.47(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}$ and $\mathrm{C}(2) \mathrm{H})$, $2.15-2.11\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right), 1.79-1.64(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, 1.59-1.19 ($18 \mathrm{H}, \mathrm{m}, \mathrm{CH}, \mathrm{OH}, \mathrm{H}$ of $\mathrm{CH}_{2}, 3 \times \mathrm{Me}$ and $3 \times \mathrm{CH}_{2}$) and $0.92(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{Me}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz})(3: 1$ mixture of rotational isomers observed) $155.5(\mathrm{C}=\mathrm{O}), 83.5(\mathrm{C}-\mathrm{OH}$, quat.), $79.6\left(\mathrm{CMe}_{3}\right), 56.8$ and $56.0(\mathrm{C} 4), 34.3$ and $33.8(\mathrm{C} 2), 33.3\left(\mathrm{CH}_{2}\right)$, 31.0 and $30.6\left(\mathrm{CH}_{2}\right), 28.3$ and $28.2(3 \times \mathrm{Me}), 26.5\left(\mathrm{CH}_{2}\right), 23.1$ $\left(\mathrm{CH}_{2}\right), 20.7$ and $20.6(\mathrm{CH})$ and 14.1 and $13.5(\mathrm{CH}$ and Me$) ; \mathrm{m} / \mathrm{z}$ (CI) $268\left(\mathrm{M}+\mathrm{H}^{+}, 20 \%\right), 229(10), 212(5)$ and $168(\mathrm{M}-\mathrm{Boc}$, 100) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 268.1911. $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NO}_{3}$ requires M, 268.1913).

3-(tert-Butoxycarbonyl)-5-phenyl-3-azatricyclo[2.2.1.0 ${ }^{2.6}$]-heptan-5-ol 259

$\mathrm{PhLi}\left(1.8 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in $30 \% \mathrm{Et}_{2} \mathrm{O}$-cyclohexane; $0.79 \mathrm{~cm}^{3}$, 1.42 mmol) was added dropwise to a stirred solution of ketone 22 ($150 \mathrm{mg}, 0.72 \mathrm{mmol}$) in THF $\left(5 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ under argon. After 1 h , the reaction mixture was allowed to warm to $25^{\circ} \mathrm{C}$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(10 \mathrm{~cm}^{3}\right)$ added. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 20 \mathrm{~cm}^{3}\right)$ and the organic extracts were combined, washed with brine, dried and the solvent evaporated under reduced pressure to give a yellow oil. Purification was by column chromatography ($50 \% \mathrm{Et}_{2} \mathrm{O}$-light petroleum). First to elute was endo alcohol 25, isolated as a clear colourless oil $(107 \mathrm{mg}, 52 \%) ; R_{\mathrm{f}}\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$-hexane) $0.21 ; v_{\text {max }} / \mathrm{cm}^{-1} 3392 \mathrm{~m}$, $2976 \mathrm{~m}, 1674 \mathrm{~s}, 1427 \mathrm{~s}, 1366 \mathrm{~s}, 1296 \mathrm{~m}, 1171 \mathrm{~s}$ and $1079 \mathrm{~s} ; \delta_{\mathrm{H}^{-}}$ (270 MHz) $7.49(2 \mathrm{H}, \mathrm{dd}, J 8.5,2.0,2 \times \mathrm{CH}$ of Ph), 7.38-7.27 (3 $\mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}$ of Ph$), 3.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}(4) \mathrm{H}), 3.78(1 \mathrm{H}, \mathrm{t}, J 4.5$, $\mathrm{C}(2) \mathrm{H}), 2.60(1 \mathrm{H}, \mathrm{br} s, \mathrm{OH}), 1.82(1 \mathrm{H}, \mathrm{t}, J 5.0, \mathrm{C}(6) \mathrm{H}), 1.68-$ $1.70(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) \mathrm{H}), 1.50\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 1.42(1 \mathrm{H}, \mathrm{d}, J 11.0$, H of $\left.\mathrm{CH}_{2}\right)$ and $1.24\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz})$ 157.2 (C=O), 139.4 (C of Ph, quat.), 128.3, 128.2, 128.1, 128.0 and $126.9(5 \times \mathrm{CH}$ of Ph$), 84.6\left(\mathrm{C}-\mathrm{OH}\right.$, quat.), $80.4\left(\mathrm{CMe}_{3}\right)$, $60.2(\mathrm{C} 4), 33.0(\mathrm{C} 2), 29.8\left(\mathrm{CH}_{2}\right), 28.4,28.3$ and $28.1(3 \times \mathrm{Me})$, $20.5(\mathrm{C} 6)$ and $15.4(\mathrm{C} 1) ; m / z(\mathrm{CI}) 288\left(\mathrm{M}+\mathrm{H}^{+}, 20 \%\right), 249(10)$, 232 (10) and 188 ($\mathrm{M}-\mathrm{Boc}, 100$) (Found: $\mathrm{M}+\mathrm{H}^{+}, 288.1604$. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{3}$ requires $M, 288.1600$). Second to elute was exo alcohol 25, isolated as a clear colourless oil ($75 \mathrm{mg}, 36 \%$); R_{f} ($50 \% \mathrm{Et}_{2} \mathrm{O}$-hexane) $0.16 ; v_{\text {max }} / \mathrm{cm}^{-1} 3391 \mathrm{~m}, 2976 \mathrm{~m}, 1670 \mathrm{~s}$, $1430 \mathrm{~s}, 1366 \mathrm{~s}, 1297 \mathrm{~m}, 1171 \mathrm{~s}$ and $1081 \mathrm{~s} ; \delta_{\mathrm{H}}(270 \mathrm{MHz}) 7.53(2 \mathrm{H}$, $\mathrm{dd}, J 8.5,2.0,2 \times \mathrm{CH}$ of Ph$), 7.37-7.31(3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}$ of Ph$)$, $3.75-3.40(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}$ and $\mathrm{C}(2) \mathrm{H}), 2.39(1 \mathrm{H}, \mathrm{d}, J 10.5$, H of $\left.\mathrm{CH}_{2}\right), 2.15(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.75(1 \mathrm{H}, \mathrm{d}, J 5.0, \mathrm{C}(1) \mathrm{H}), 1.67-$ $1.65(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) \mathrm{H}), 1.57\left(1 \mathrm{H}, \mathrm{d}, J 10.5, \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right)$ and 1.27 and $1.08\left(9 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{Bu}^{1}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz})$ ($3: 1$ mixture of rotational isomers observed) $154.6(\mathrm{C}=\mathrm{O})$, $141.4(\mathrm{C} \mathrm{of} \mathrm{Ph}$, quat.), 128.4, 128.2, 128.1, 126.9 and $126.8(5 \times \mathrm{CH}$ of Ph$), 84.9$ ($\mathrm{C}-\mathrm{OH}$, quat.), $79.2\left(\mathrm{CMe}_{3}\right), 59.0$ and $57.5(\mathrm{C} 4), 35.0$ and 34.6
(C2), 32.1 and $31.5\left(\mathrm{CH}_{2}\right), 28.3$ and $28.2(3 \times \mathrm{Me}), 21.2$ and 20.6 (C6) and 14.6 and $13.9(\mathrm{C} 1) ; m / z(\mathrm{CI}) 288\left(\mathrm{M}+\mathrm{H}^{+}, 20 \%\right)$, 249 (10), 232 (10) and 188 ($\mathrm{M}-\mathrm{Boc}, 100$) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 288.1604. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{3}$ requires $M, 288.1600$).

3-(tert-Butoxycarbonyl)-5-(6-methoxypyridin-3-yl)-3azatricyclo[2.2.1.0 ${ }^{2,6}$]heptan-5-ol 264

$\mathrm{Bu}^{n} \mathrm{Li}\left(2.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in hexanes; $2.22 \mathrm{~cm}^{3}$, 5.55 mmol) was added dropwise to a stirred solution of 5-bromo-2-methoxypyridine ${ }^{30,43}(1.21 \mathrm{~g}, 6.44 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(18 \mathrm{~cm}^{3}\right)$ and THF $\left(8.0 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ under argon. After 30 min , ketone 22 ($450 \mathrm{mg}, 2.15 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(8 \mathrm{~cm}^{3}\right)$ was added. The reaction mixture was stirred for 3 h at $-78^{\circ} \mathrm{C}$ and then warmed to $25^{\circ} \mathrm{C}$ before saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(15 \mathrm{~cm}^{3}\right)$ was added. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 25 \mathrm{~cm}^{3}\right)$ and the organic extracts were combined, washed with brine, dried and the solvent evaporated under reduced pressure to give a yellow oil which was purified by column chromatography ($50 \% \mathrm{Et}_{2} \mathrm{O}-$ light petroleum). First to elute was the endo alcohol 26, isolated as a white foam ($300 \mathrm{mg}, 44 \%$); $R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O}\right) 0.45 ; v_{\text {max }} / \mathrm{cm}^{-1} 3401 \mathrm{~s}$, 2978s, 1694s, $1694 \mathrm{~m}, 1496 \mathrm{~s}, 1368 \mathrm{~s}, 1289 \mathrm{~s}, 1173 \mathrm{~m}$ and 1114 m ; $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 8.26(1 \mathrm{H}, \mathrm{d}, J 2.0, \mathrm{C}(2$ of pyridine $) \mathrm{H}), 7.70(1 \mathrm{H}$, dd, $J 8.5,2.0, \mathrm{C}(4$ of pyridine $) \mathrm{H})$, $6.74(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{C}(5$ of pyridine) H), $3.94(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.86(1 \mathrm{H}$, br s, C(4)H), 3.79 $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}(2) \mathrm{H}), 2.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.81(1 \mathrm{H}, \mathrm{t}, J 5.0$, $\mathrm{C}(6) \mathrm{H}), 1.70(1 \mathrm{H}, \mathrm{t}, J 5.0, \mathrm{C}(1) \mathrm{H}), 1.50\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 1.43(1 \mathrm{H}$, d, $J 10.5, \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right)$ and $1.26\left(1 \mathrm{H}, \mathrm{d}, J 10.5, \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR NOE experiments: irradiation at $\delta 8.26$ saw enhancement at $1.81(5.5 \%)$ and $1.70(1.4 \%)$; irradiation at $\delta 3.86$ saw enhancement at $8.26(2.2 \%)$ and $7.70(4.0 \%)$; irradiation at $\delta 3.79$ saw enhancement at $1.81(5.3 \%)$ and $1.70(3.2 \%) ; \delta_{\mathrm{C}^{-}}$ (125 MHz) $164.0(\mathrm{C} 3$ of pyridine, quat.), $154.0(\mathrm{C}=\mathrm{O}), 145.4$ (C 2 of pyridine), 137.6 (C 4 of pyridine), 127.8 (C 6 of pyridine, quat.), 110.7 (C5 of pyridine), 82.8 (C-OH, quat.), 80.7 $\left(\mathrm{CMe}_{3}\right), 60.5(\mathrm{C} 4), 53.5(\mathrm{OMe}), 33.0(\mathrm{C} 2), 29.7\left(\mathrm{CH}_{2}\right)$, $28.3(3 \times \mathrm{Me}), 20.5(\mathrm{C} 6)$ and $15.4(\mathrm{C} 1) ; m / z(\mathrm{CI}) 319\left(\mathrm{M}+\mathrm{H}^{+}\right.$, 50%), 263 (60) and 201 (100) (Found: $\mathrm{M}+\mathrm{H}^{+}, 319.1655$. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires M, 319.1658). Second to elute was exo alcohol 26 isolated as a white solid ($300 \mathrm{mg}, 44 \%$); $R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O}\right)$ $0.34 ; \mathrm{mp}\left(\right.$ from $\left.\mathrm{Et}_{2} \mathrm{O}\right) 121-122^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 8.31(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{C}(2$ of pyridine $) \mathrm{H}), 7.74-7.72(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4$ of pyridine $) \mathrm{H}), 6.72$ ($1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{C}(5$ of pyridine) H$), 3.91(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.85-3.81$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}), 3.74-3.66(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2) \mathrm{H}), 2.36(1 \mathrm{H}, \mathrm{d}$, $J 10.0, \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right), 2.17(1 \mathrm{H}$, br s, OH$), 1.78(1 \mathrm{H}, \mathrm{t}, J 4.5$, $\mathrm{C}(1) \mathrm{H}), 1.68(1 \mathrm{H}$, br s, C(6)H$), 1.57(1 \mathrm{H}, \mathrm{dt}, J 10.0,1.5, \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right)$ and 1.30 and $1.17\left(9 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{Bu}^{\prime}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz})(3: 2$ mixture of rotational isomers observed) 163.9 (C 3 of pyridine, quat.), 154.8 ($\mathrm{C}=\mathrm{O}$), 145.4 and 144.9 (C 2 of pyridine), 137.6 (C4 of pyridine), 129.7 (C6 pyridine, quat.), 110.6 and 110.3 (C5 of pyridine), 83.2 and $83.0(\mathrm{C}-\mathrm{OH}$, quat.), 79.8 and 79.6 $\left(\mathrm{CMe}_{3}\right), 58.9$ and $57.6(\mathrm{C} 4), 53.5(\mathrm{OMe}), 35.1$ and $34.6(\mathrm{C} 2)$, 31.9 and $31.3\left(\mathrm{CH}_{2}\right)$, $28.3(3 \times \mathrm{Me}), 21.0$ and $20.6(\mathrm{C} 6)$ and 14.6 and $13.9(\mathrm{Cl}) ; ~ m / z(\mathrm{CI}) 319\left(\mathrm{M}+\mathrm{H}^{+}, 70 \%\right), 263$ (100) and 201 (50) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 319.1655. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires M, 319.1658).

3-(tert-Butoxycarbonyl)-5-exo-(6-chloropyridin-3-yl)-3azatricyclo[2.2.1.0 ${ }^{2,6}$]heptan-5-ol 279

$\mathrm{Bu}^{n} \mathrm{Li}\left(2.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in hexanes; $1.20 \mathrm{~cm}^{3}, 2.52 \mathrm{mmol}$) was added dropwise to a stirred solution of 2-chloro-5-iodopyridine ${ }^{32,44}(688 \mathrm{mg}, 2.87 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(15 \mathrm{~cm}^{3}\right)$ and THF $\left(5.0 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ under argon. After 30 min , ketone 22 ($200 \mathrm{mg}, 0.96 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(6 \mathrm{~cm}^{3}\right)$ was added. The reaction mixture was stirred for 3 h at $-78^{\circ} \mathrm{C}$ and then warmed to $25^{\circ} \mathrm{C}$ over 15 min and then saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(10 \mathrm{~cm}^{3}\right)$ was added. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 20 \mathrm{~cm}^{3}\right)$ and the organic extracts were combined, washed with brine, dried and the solvent evaporated under reduced pressure. Purification by column chromatography ($50 \% \mathrm{Et}_{2} \mathrm{O}$-light petrol-
eum) gave tertiary alcohol $\mathbf{2 7}$ as a cream foam ($230 \mathrm{mg}, 74 \%$); $R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O}\right) 0.32 ; v_{\text {max }} / \mathrm{cm}^{-1} 3362 \mathrm{~m}, 2978 \mathrm{~m}, 1674 \mathrm{~s}, 1458 \mathrm{~m}, 1368 \mathrm{~s}$, $1295 \mathrm{~s}, 1170 \mathrm{~m}$ and $1108 \mathrm{~s} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 8.58-8.52(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(2$ of pyridine $) \mathrm{H}), 7.86-7.83(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4$ of pyridine $) \mathrm{H}), 7.32(1$ $\mathrm{H}, \mathrm{d}, J 9.5, \mathrm{C}(5$ of pyridine)H$), 3.99-3.76(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}$ and $\mathrm{C}(2) \mathrm{H}), 2.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.41\left(1 \mathrm{H}, \mathrm{d}, J 10.5, \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right)$, $1.86(1 \mathrm{H}, \mathrm{t}, J 5.0, \mathrm{C}(1) \mathrm{H}), 1.74(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}(6) \mathrm{H}), 1.63(1 \mathrm{H}, \mathrm{d}$, $J 10.5, \mathrm{H}^{2}$ of CH_{2}) and 1.37 and $1.23\left(9 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{Bu}^{\prime}\right) ;{ }^{1} \mathrm{H}$ NMR NOE experiments: irradiation at $\delta 8.56$ saw enhancement at $3.88(3.2 \%)$ and $1.74(3 \%)$; irradiation at $\delta 3.88$ saw enhancement at 8.56 (1.5%), $7.85(2.7 \%)$, $2.41(1 \%), 1.86(4 \%), 1.74$ (3.3%) and 1.63 (1.8%); irradiation at $\delta 2.41$ saw enhancement at $3.88(1.3 \%)$ and $1.63(3 \%) ; \delta_{\mathrm{C}}(125 \mathrm{MHz})(3: 2$ mixture of rotational isomers observed) $154.8(\mathrm{C}=\mathrm{O}), 150.8$ (C 6 of pyridine, quat.), 148.6 and 148.4 (C 2 of pyridine), 148.0 (C 3 of pyridine, quat.), 137.8 and 137.5 (C 4 of pyridine), 123.8 and 123.5 (C5 of pyridine), $82.7\left(\mathrm{C}-\mathrm{OH}\right.$, quat.), $80.0\left(\mathrm{CMe}_{3}\right), 59.1$ and $57.8(\mathrm{C} 4), 35.3$ and $34.8(\mathrm{C} 2), 32.0$ and $31.5\left(\mathrm{CH}_{2}\right), 28.2$, 28.1 and $28.0(3 \times \mathrm{Me}), 21.3$ and $20.8(\mathrm{C} 6)$ and 14.6 and 14.0 (C1); $m / z(\mathrm{CI}) 323\left(\mathrm{M}+\mathrm{H}^{+}, 35 \%\right), 267(100)$ and $223.0(\mathrm{M}-$ Boc, 68) (Found: $\mathrm{M}+\mathrm{H}^{+}, 323.1162 . \mathrm{C}_{16} \mathrm{H}_{20}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{3}$ requires $M, 323.1162$).

2-(tert-Butoxycarbonyl)-6-(n-butyl)-2-azabicyclo[2.2.1]-hept-5-ene 28

DMAP ($34 \mathrm{mg}, 0.28 \mathrm{mmol}$) and $\mathrm{ClCOCO}_{2} \mathrm{Me}\left(0.03 \mathrm{~cm}^{3}\right.$, 0.33 mmol) were added to a stirred solution of alcohol 24 $(50 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{MeCN}\left(3 \mathrm{~cm}^{3}\right)$ at $25^{\circ} \mathrm{C}$ under argon. After 0.5 h , the reaction mixture was diluted with EtOAc $\left(10 \mathrm{~cm}^{3}\right)$ and washed with saturated aqueous $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$ and $\mathrm{H}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed under reduced pressure to give the crude oxalyl ester as a yellow oil (80 mg) which then was coevaporated twice with toluene. AIBN ($c a .5 \mathrm{mg}$) and $\mathrm{Bu}_{3} \mathrm{SnH}$ $\left(0.08 \mathrm{~cm}^{3}, 0.30 \mathrm{mmol}\right)$ were added to a stirred solution of the crude oxalyl ester in dry, degassed toluene $\left(5 \mathrm{~cm}^{3}\right)$ and the reaction mixture was then heated to $100^{\circ} \mathrm{C}$. After 45 min the reaction mixture was allowed to cool and the solvent was removed under reduced pressure to give a yellow oil which was treated exactly according to the procedure of Curran and Chang ${ }^{42}$ to remove tin by-products. Final purification by column chromatography ($40 \% \mathrm{Et}_{2} \mathrm{O}$-hexane) gave alkene $\mathbf{2 8}$ as a colourless oil ($30 \mathrm{mg}, 63 \%$): R_{f} ($30 \% \mathrm{Et}_{2} \mathrm{O}$-hexane) 0.47 ; $v_{\text {max }} / \mathrm{cm}^{-1} 2960 \mathrm{~s}$, $1697 \mathrm{~s}, 1391 \mathrm{~s}, 1182 \mathrm{~m}$ and $1141 \mathrm{~m} ; \delta_{\mathrm{H}}(270 \mathrm{MHz})(3: 1$ mixture of rotational isomers observed) $5.73-5.72(1 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}), 4.55$ and $4.42(1 \mathrm{H}, 2 \times \mathrm{br} \mathrm{s}, \mathrm{C}(1) \mathrm{H}), 3.29(1 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{H}$ of $\left.\mathrm{C}(3) \mathrm{H}_{2}\right), 3.06(1 \mathrm{H}, \mathrm{d}, J 3.5, \mathrm{C}(4) \mathrm{H}), 2.66$ and $2.57(1 \mathrm{H}, 2 \times \mathrm{d}$, $J 9.0$, H of C(3) H_{2}), 2.27-2.15 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{C}(7) \mathrm{H}_{2}\right), 1.48-1.43(9 \mathrm{H}$ $\left.\mathrm{m}, \mathrm{Bu}^{\prime}\right)$ and $1.27-0.85\left(9 \mathrm{H}, \mathrm{m}, \mathrm{Bu}^{n}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz})(3: 1$ mixture of rotational isomers observed) $151.9(\mathrm{C}=\mathrm{O}), 149.6(\mathrm{CH}=C$, quat.), $127.6(\mathrm{CH}=\mathrm{C}), 78.9\left(\mathrm{CMe}_{3}\right), 63.6$ and $62.7(\mathrm{C} 1), 48.1$ and 47.8 (C7), 47.3 and 46.7 (C3), 43.1 and 42.6 (C4), 31.6 $\left(\mathrm{CH}_{2}\right), 29.6$ and $29.4\left(\mathrm{CH}_{2}\right), 28.5(3 \times \mathrm{Me}), 22.6$ and $22.5\left(\mathrm{CH}_{2}\right)$ and 14.1 and $13.9(\mathrm{Me}) ; m / z(\mathrm{CI}) 252\left(\mathrm{M}+\mathrm{H}^{+}, 15 \%\right), 213(35)$, 196 (50) and 123 (100) (Found: $\mathrm{M}+\mathrm{H}^{+}, 252.1962 . \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NO}_{2}$ requires $M, 252.1964$).

2-(tert-Butoxycarbonyl)-6-phenyl-2-azabicyclo[2.2.1]hept-5-ene

 29Alcohol 25 ($70 \mathrm{mg}, 0.24 \mathrm{mmol}$) was deoxygenated following the procedure described for 28. Purification by column chromatography ($40 \% \mathrm{Et}_{2} \mathrm{O}$-hexane) gave alkene 29 as a colourless oil ($40 \mathrm{mg}, 62 \%$): $R_{\mathrm{f}}\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$-hexane) $0.44 ; v_{\text {max }} / \mathrm{cm}^{-1} 2977 \mathrm{~m}$, $1692 \mathrm{~s}, 1402 \mathrm{~s}, 1365 \mathrm{~m}, 1155 \mathrm{~s}$ and 758 s ; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}\right.$; $\left.55^{\circ} \mathrm{C}\right) 7.55$ $(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{CH}$ of Ph$), 7.31(2 \mathrm{H}, \mathrm{t}, J 7.5,2 \times \mathrm{CH}$ of Ph$), 7.22$ $(1 \mathrm{H}, \mathrm{t}, J 7.5$, CH of Ph), $6.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{CH}), 5.09(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{C}(1) \mathrm{H}), 3.44\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $3.0, \mathrm{H}$ of $\left.\mathrm{C}(3) \mathrm{H}_{2}\right), 3.26(1 \mathrm{H}, \mathrm{br}$ s, C(4)H), $2.79\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}\right.$ of C(3) H_{2}), $1.76\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}(7) \mathrm{H}_{2}\right)$ and $1.40\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz})(3: 1$ mixture of rotational
isomers observed) $154.8(\mathrm{C}=\mathrm{O}), 149.1$ and $147.7(\mathrm{CH}=C), 134.0$ (C of Ph , quat.), 129.1 and $128.8(\mathrm{CH}=\mathrm{C}), 128.5$ and $128.3(2 \times$ CH of Ph$), 127.5$ and $127.3(\mathrm{CH}$ of Ph$), 125.6(2 \times \mathrm{CH}$ of Ph$)$, 79.5 and $79.0\left(\mathrm{CMe}_{3}\right), 62.0$ and $61.4(\mathrm{C} 1), 48.1$ and $48.0(\mathrm{C} 7)$, 47.0 and $46.5(\mathrm{C} 3), 43.8$ and $43.3(\mathrm{C} 4)$ and 28.5 and 28.4 $(3 \times \mathrm{Me}) ; m / z(\mathrm{CI}) 272\left(\mathrm{M}+\mathrm{H}^{+}, 20 \%\right), 233(70), 216(80)$ and 143 (100) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 272.1649. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{2}$ requires M, 272.1651).

2-(tert-Butoxycarbonyl)-6-(6-methoxypyridin-3-yl)-2-azabicyclo[2.2.1]hept-5-ene 30

Alcohol 26 ($130 \mathrm{mg}, 0.41 \mathrm{mmol}$) was deoxygenated following the procedure described for $\mathbf{2 8}$. Purification by column chromatography ($50 \% \mathrm{Et}_{2} \mathrm{O}$-light petroleum) gave alkene $\mathbf{3 0}$ as a clear colourless oil ($70 \mathrm{mg}, 57 \%$); $R_{\mathrm{f}}\left(50 \% \mathrm{Et}_{2} \mathrm{O}\right.$-light petroleum) $0.33 ; v_{\max } / \mathrm{cm}^{-1} 2977 \mathrm{~m}, 1692 \mathrm{~s}, 1603 \mathrm{~s}, 1500 \mathrm{~s}, 1409 \mathrm{~s}, 1290 \mathrm{~s}, 1158 \mathrm{~s}$ and $1023 \mathrm{~m} ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 8.38(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(2$ of pyridine $) \mathrm{H}), 7.72$ $(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{C}(4$ of pyridine $) \mathrm{H}), 6.71(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{C}(5$ of pyridine) H), $6.41(1 \mathrm{H}, \mathrm{br}$ s, C=CH), $5.06(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) \mathrm{H}), 3.94$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.44\left(1 \mathrm{H}, \mathrm{dd}, J 9.5,3.0, \mathrm{H}\right.$ of $\left.\mathrm{C}(3) \mathrm{H}_{2}\right), 3.28(1 \mathrm{H}$, br s, C(4)H), $2.80\left(1 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{H}\right.$ of C(3) H_{2}), 1.76-1.60 (2 H , $\left.\mathrm{m}, \mathrm{C}(7) \mathrm{H}_{2}\right)$ and $1.40\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz})(3: 1$ mixture of rotational isomers observed) 163.4 (C6 of pyridine, quat.), 154.9 and $154.0(\mathrm{C}=\mathrm{O}), 146.6$ and 145.4 ($\mathrm{HC}=C$, quat.), 144.2 and 144.0 (C 2 of pyridine), 137.8 and 135.8 (C 4 of pyridine), 127.9 and $127.6(\mathrm{HC=C}), 123.2$ and 122.2 (C 3 of pyridine, quat.), 110.4 and 110.3 (C 5 of pyridine), 79.8 and $79.6\left(\mathrm{CMe}_{3}\right)$, 61.6 and $61.4(\mathrm{C} 1), 54.1(\mathrm{OMe}), 48.0$ and $47.2(\mathrm{C} 7), 43.8$ and 43.2 (C3), 38.9 and $38.0(\mathrm{C} 4)$ and 28.6, 28.4 and $28.3(3 \times \mathrm{Me})$; m / z (CI) 319.2 (100%), $303.2\left(\mathrm{M}+\mathrm{H}^{+}, 15\right)$, 263 (50) and 219 (80). $\mathbf{3 0}$ is unstable especially in protic solvents. Accurate mass not measured due to decomposition.

2-(tert-Butoxycarbonyl)-6-(6-chloropyridin-3-yl)-2-azabicyclo[2.2.1]hept-5-ene 31

Alcohol 27 ($200 \mathrm{mg}, 0.62 \mathrm{mmol}$) was deoxygenated following the procedure described for 28. Purification by column chromatography ($40 \% \mathrm{Et}_{2} \mathrm{O}$-light petroleum) gave alkene $\mathbf{3 1}$ as a clear colourless oil ($115 \mathrm{mg}, 61 \%$); $R_{\mathrm{f}}\left(75 \% \mathrm{Et}_{2} \mathrm{O}\right.$-light petroleum) $0.61 ; v_{\max } / \mathrm{cm}^{-1} 2975 \mathrm{~m}, 1691 \mathrm{~s}, 1464 \mathrm{~m}, 1408 \mathrm{~s}, 1367 \mathrm{~s}, 1157 \mathrm{~s}$ and $1106 \mathrm{~s} ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; 60{ }^{\circ} \mathrm{C}\right) 8.57(1 \mathrm{H}, \mathrm{dd}, J 2.5,0.5, \mathrm{C}(2$ of pyridine) H$)$, 7.94 and $7.78(1 \mathrm{H}, 2 \times \mathrm{br} \mathrm{s}, \mathrm{C}(4$ of pyridine) H$)$, $7.27(1 \mathrm{H}$, dd, $J 8.0,0.5, \mathrm{C}(5$ of pyridine $) \mathrm{H}), 6.57(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{C}=\mathrm{CH}), 5.05-5.03(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(1) \mathrm{H}), 3.47(1 \mathrm{H}, \mathrm{dd}, J 9.0$ and 3.0 , H of $\left.\mathrm{C}(3) \mathrm{H}_{2}\right), 3.31(1 \mathrm{H}$, br s, $\mathrm{C}(4) \mathrm{H}), 2.78(1 \mathrm{H}$, br s, H of $\left.\mathrm{C}(3) \mathrm{H}_{2}\right), 1.77\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}(7) \mathrm{H}_{2}\right)$ and $1.41\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right)$; $\delta_{\mathrm{C}}(100 \mathrm{MHz})(2: 1$ mixture of rotational isomers observed) 154.9 and $154.8(\mathrm{C}=\mathrm{O}), 150.1(\mathrm{CH}=C), 147.0(\mathrm{C} 2$ of pyridine), 145.3 and 143.8 (C6 of pyridine, quat.), 136.5 and 135.5 (C4 of pyridine), 132.0 and $131.7(\mathrm{CH}=\mathrm{C}), 129.7$ and $128.9(\mathrm{C} 3$ of pyridine, quat.), 124.1 and 124.0 (C5 of pyridine), 80.2 and 79.7 $\left(\mathrm{CMe}_{3}\right), 61.7$ and $61.5(\mathrm{C} 1), 48.4$ and $48.1(\mathrm{C} 7), 47.0$ and 46.5 (C3), 44.3 and $43.7(\mathrm{C} 4)$ and $28.6(3 \times \mathrm{Me}) ; \mathrm{m} / z\left(\mathrm{CI}, \mathrm{CH}_{4}\right) 325 /$ 323 (35\%), 309/307 ($\mathrm{M}+\mathrm{H}^{+}, 90$), 269/267 (10), 253/251 (20) and 225/223 (100) (Found: $\mathrm{M}+\mathrm{H}^{+}, 307.1224 . \mathrm{C}_{16} \mathrm{H}_{20}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{2}$ requires $M, 307.1213$).

endo-2-(tert-Butoxycarbonyl)-6-(6-methoxypyridin-3-yl)-2-azabicyclo[2.2.1]heptane 32

$10 \% \mathrm{Pd} / \mathrm{C}(15 \mathrm{mg})$ was added to a solution of alkene $\mathbf{3 0}(19 \mathrm{mg}$, 0.063 mmol) in EtOAc ($4 \mathrm{~cm}^{3}$). The flask was evacuated and then flushed with H_{2}, and the reaction mixture was stirred under 1 atm of H_{2} for 2 h . The reaction mixture was filtered through Celite and the solvent evaporated under reduced pressure to give a clear colourless oil. Purification by column chromatography (gradient elution $50-75 \% \mathrm{Et}_{2} \mathrm{O}$-light petroleum) gave 2-azabicyclo[2.2.1]heptane $\mathbf{3 2}$ as a clear colourless oil (15 $\mathrm{mg}, 78 \%) ; R_{\mathrm{f}}\left(\mathrm{Et}_{2} \mathrm{O}\right) 0.51 ; v_{\text {max }} / \mathrm{cm}^{-1} 2974 \mathrm{~s}, 2880 \mathrm{~m}, 1690 \mathrm{~s}$,
$1606 \mathrm{~m}, 1497 \mathrm{~s}, 1411 \mathrm{~s}, 1288 \mathrm{~s}$ and $1151 \mathrm{~s} ; \delta_{\mathrm{H}}(500 \mathrm{MHz})(2: 1 \mathrm{mix}-$ ture of rotational isomers observed) 7.98 and $7.96(1 \mathrm{H}, \mathrm{d}, J 2.5$, $\mathrm{C}(2$ of pyridine $) \mathrm{H}), 7.40$ and $7.35(1 \mathrm{H}, 2 \times \mathrm{dd}, J 8.5,2.5, \mathrm{C}(4$ of pyridine) H$), 6.69$ and $6.65(1 \mathrm{H}, 2 \times \mathrm{d}, J 8.5, \mathrm{C}(5$ of pyridine) H), 4.29 and $4.12(1 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{C}(1) \mathrm{H}), 3.91$ and $3.89(3 \mathrm{H}, \mathrm{s}$, OMe), 3.45-3.35 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}$ of $\left.\mathrm{C}(3) \mathrm{H}_{2}\right), 3.30-3.20(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C}(6) \mathrm{H}), 3.13$ and $3.08\left(1 \mathrm{H}, 2 \times \mathrm{d}, J 10.0, \mathrm{H}\right.$ of $\left.\mathrm{C}(3) \mathrm{H}_{2}\right), 2.66$ $2.63(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}), 2.18-2.09\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}\right.$ of $\left.\mathrm{C}(5) \mathrm{H}_{2}\right), 1.82-$ $1.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(7) \mathrm{H}_{2}\right), 1.55-1.46\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) \mathrm{H}_{2}\right)$ and 1.33 and $1.10\left(9 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{Bu}^{1}\right) ;{ }^{1} \mathrm{H}$ NMR NOE experiments: irradiation at $\delta 7.40$ saw enhancement at $6.67(9.7 \%), 3.25(2.3 \%), 3.08$ (2.8%) and $1.50(3.7 \%)$; irradiation at $\delta 3.25$ saw enhancement at $7.97(6 \%), 7.37(1.2 \%), 4.29$ and $4.12(1.9$ and $4 \%), 2.15$ (6.8%) and $1.70(3.2 \%) ; \delta_{\mathrm{C}}(125 \mathrm{MHz})$ ($3: 1 \mathrm{mixture}$ of rotational isomers observed) 162.9 (C6 of pyridine, quat.), $154.1(\mathrm{C}=\mathrm{O}), 146.4$ and 145.7 (C 2 of pyridine), 138.5 and 138.0 (C 4 of pyridine), 129.6 (C3 of pyridine, quat.), 110.2 and 110.1 (C5 of pyridine), 78.9 and $78.7\left(\mathrm{CMe}_{3}\right), 62.1$ and $60.4(\mathrm{C} 1), 53.4$ and 53.2 (OMe), 52.6 (C3), 45.8 and 45.6 (C6), 39.7 and 39.2 (C7), 38.0 and 37.5 (C4), 34.3 and 33.3 (C5) and 28.4 and 28.1 ($3 \times \mathrm{Me}$); m / z (EI) 304 ($\mathrm{M}^{+}, 45 \%$) and 231 (100) (Found: M^{+}, 304.1794. $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $M, 304.1787$).

endo-2-(tert-Butoxycarbonyl)-6-(6-chloropyridin-3-yl)-2-azabicyclo[2.2.1]heptane 33

$10 \% \mathrm{Pd} / \mathrm{C}$ (Aldrich; 10 mg) was added to a solution of alkene $31(90 \mathrm{mg}, 0.29 \mathrm{mmol})$ in EtOAc ($18 \mathrm{~cm}^{3}$). The flask was immediately evacuated, flushed with H_{2} and the reaction mixture was stirred under 1 atm of H_{2} for 3 h . The reaction mixture was filtered through Celite and the solvent evaporated under reduced pressure to give a clear colourless oil. Purification by column chromatography ($50 \% \mathrm{Et}_{2} \mathrm{O}$-light petroleum) gave 2-azabicyclo[2.2.1] heptane 33 as a white solid ($86 \mathrm{mg}, 96 \%$); R_{f} ($75 \% \mathrm{Et}_{2} \mathrm{O}$-light petroleum) 0.47; mp (from $\mathrm{Et}_{2} \mathrm{O}$) $124-125^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1} 2927 \mathrm{~s}, 1686 \mathrm{~s}, 1456 \mathrm{~s}, 1412 \mathrm{~s}$ and $1151 \mathrm{~s} ; \delta_{\mathrm{H}}(500 \mathrm{MHz})$ 8.22 and $8.20(1 \mathrm{H}, 2 \times \mathrm{d}, J 2.5, \mathrm{C}(2$ of pyridine $) \mathrm{H}), 7.64-7.61$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4$ of pyridine $) \mathrm{H}), 7.38$ and $7.33(1 \mathrm{H}, 2 \times \mathrm{d}, J 8.0$, $\mathrm{C}(5$ of pyridine $) \mathrm{H}), 4.20$ and $4.17(1 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{C}(1) \mathrm{H}), 3.48-3.45$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(3) \mathrm{H}_{2}\right), 3.41-3.31(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) \mathrm{H}), 3.19$ and 3.15 (1 $\mathrm{H}, 2 \times \mathrm{d}, J 9.5, \mathrm{H}$ of $\left.\mathrm{C}(3) \mathrm{H}_{2}\right), 2.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}(4) \mathrm{H}), 2.25-2.14$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}$ of $\left.\mathrm{C}(5) \mathrm{H}_{2}\right), 1.86-1.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}(7) \mathrm{H}_{2}\right), 1.66-1.55$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}\right.$ of $\left.\mathrm{C}(5) \mathrm{H}_{2}\right)$ and 1.32 and $1.08\left(9 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{Bu}^{\prime}\right)$; $\delta_{\mathrm{C}}(125 \mathrm{MHz})(2: 1$ mixture of rotational isomers observed) $155.8(\mathrm{C}=\mathrm{O}), 150.8$ and 150.3 (C 2 of pyridine), 150.1 (C 6 of pyridine, quat.), 140.6 and 140.3 (C4 of pyridine), 138.4 (C3 of pyridine, quat.), 125.2 and 125.0 (C5 of pyridine), 80.7 and 80.5 $\left(\mathrm{CMe}_{3}\right), 63.9$ and $62.3(\mathrm{C} 1), 54.5$ and $53.7(\mathrm{C} 3), 48.5$ and 47.1 (C6), 40.6 and 40.1 (C7), 39.5 and 39.0 (C4), 34.3 and 33.3 (C5) and 28.7 and $28.4(3 \times \mathrm{Me}) ; m / z(\mathrm{CI}) 309 / 311\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$, 275/276 (48) and 209/211 (M - Boc, 47) (Found: M + H 309.1374. $\mathrm{C}_{16} \mathrm{H}_{22}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{2}$ requires $M, 309.1370$). The enantiomers were separated by chiral HPLC [Daicel Chiralcel OD column ($20 \mathrm{~mm} \times 250 \mathrm{~mm}$)] on a Gilson system and a 118 UV-VIS detector set at 254 nm using $10: 90 \mathrm{EtOH}-$ hexane as eluent $\left(5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right) t_{\mathrm{R}} 12.1 \mathrm{~min} ;[a]_{\mathrm{D}}^{24}+40.0\left(c 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ and $14.8 \mathrm{~min} ;[a]_{\mathrm{D}}^{24}-39.4\left(c 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

Crystal data for 33: $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{2}, M=308.81$, triclinic, space group $P \overline{1}, a=6.225(1), b=10.446(1), c=12.497$ (2) $\AA, a=$ $85.74(1)^{\circ}, \beta=87.21(1)^{\circ}, \gamma=83.12(1)^{\circ}, V=803.84(2) \AA^{3}, Z=2$. 3474 reflections measured on an Enraf Nonius DIP2000 diffractometer. $\mathrm{Cu}-\mathrm{K} \alpha$ radiation. 2841 reflections observed with $I>3 \sigma(I)$ yield $R=0.0579, R_{\mathrm{w}}=0.0643$. CCDC reference number 168194. See http://www.rsc.org/suppdata/p1/b1/ b107414h/for crystallographic data in .cif or other electronic format.

endo-6-(6-Chloropyridin-3-yl)-2-azabicyclo[2.2.1]heptane 2

TFA ($0.10 \mathrm{~cm}^{3}, 1.3 \mathrm{mmol}$) was added to a solution of 2 azabicycle $33(10 \mathrm{mg}, 0.032 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.5 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$
under argon. After stirring for 2 h at $25^{\circ} \mathrm{C}$, saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(1 \mathrm{~cm}^{3}\right)$ was added and the aqueous layer was extracted with EtOAc $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The organic layers were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent evaporated under reduced pressure. Purification by column chromatography ($1: 10: 90 \mathrm{NH}_{3}{ }^{-}$ $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 2-azabicyclo[2.2.1]heptane $\mathbf{2}$ as a clear colourless oil ($6.2 \mathrm{mg}, 93 \%$); $R_{\mathrm{f}}\left(1: 10: 90 \mathrm{NH}_{3}-\mathrm{MeOH}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.52 ; v_{\text {max }} / \mathrm{cm}^{-1} 3402 \mathrm{br} \mathrm{s}, 2927 \mathrm{~s}, 1682 \mathrm{~s}, 1462 \mathrm{~s}, 1202 \mathrm{~s}$ and $1106 \mathrm{~s} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 8.31(1 \mathrm{H}, \mathrm{d}, J 2.5, \mathrm{C}(2$ of pyridine) H$)$, $7.78(1 \mathrm{H}, \mathrm{dd}, J 8.5,2.5, \mathrm{C}(4$ of pyridine $) \mathrm{H}), 7.45$ $(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{C}(5$ of pyridine $) \mathrm{H}), 3.63(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(1) \mathrm{H}), 3.45-$ $3.41(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) \mathrm{H}), 2.95-2.92\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}\right.$ of $\left.\mathrm{C}(3) \mathrm{H}_{2}\right), 2.77$ $\left(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{H}\right.$ of $\left.\mathrm{C}(3) \mathrm{H}_{2}\right), 2.60(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(4) \mathrm{H}), 2.22-2.15$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}\right.$ of $\left.\mathrm{C}(5) \mathrm{H}_{2}\right), 1.90-1.88\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}\right.$ of $\left.\mathrm{C}(7) \mathrm{H}_{2}\right), 1.82-$ $1.79\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}\right.$ of $\left.\mathrm{C}(7) \mathrm{H}_{2}\right)$ and $1.67-1.63(1 \mathrm{H}, \mathrm{m}, \mathrm{H}$ of $\left.\mathrm{C}(5) \mathrm{H}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR NOE experiments: irradiation at $\delta 7.78$ saw enhancement at $7.45(6.8 \%)$, 3.63 (1.4%), 3.45 (1.7%), 2.77 (1.3%) and $1.65(3 \%)$; irradiation at $\delta 3.45$ saw enhancement at $8.31(3.6 \%), 7.78(2.4 \%), 3.63(2.7 \%), 2.20(5.3 \%)$ and 1.89 (4.8%); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 149.3$ (C 2 of pyridine), 139.5 (C 4 of pyridine), 124.1 (C 5 of pyridine), 60.2 (C1), 50.8 (C3), 44.6 (C6), 38.9 (C7), 37.5 (C4) and 32.8 (C5); m/z (CI) 209/211 $\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$ and 122 (30) (Found: $\mathrm{M}+\mathrm{H}^{+}, 209.0844$. $\mathrm{C}_{11} \mathrm{H}_{13}{ }^{35} \mathrm{ClN}_{2}$ requires $M, 209.0846$). The separate enantiomers had optical rotations $[a]_{D}^{24}+81.0$ (c 1.0 in CHCl_{3}) and $[a]_{D}^{24}$ $-81.1\left(c 1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

endo-2-(tert-Butoxycarbonyl)-6-(pyridin-3-yl)-2-azabicyclo[2.2.1]heptane 34

$10 \% \mathrm{Pd} / \mathrm{C}(40 \mathrm{mg})$ was added to a solution of 2-azabicycle 33 ($35 \mathrm{mg}, 0.11 \mathrm{mmol}$) in EtOAc $\left(6 \mathrm{~cm}^{3}\right)$. The flask was evacuated, flushed with H_{2}, and the reaction mixture was stirred under 1 atm of H_{2} for 48 h . The reaction mixture was filtered through Celite and the solvent evaporated under reduced pressure to give a clear colourless oil (30 mg). Purification by column chromatography (gradient elution $50 \%-100 \% \quad \mathrm{Et}_{2} \mathrm{O}$-light petroleum) gave 2 -azabicyclo[2.2.1]heptane $\mathbf{3 4}$ as a clear colourless oil ($15 \mathrm{mg}, 50 \%$); $R_{\mathrm{f}}\left(75 \% \mathrm{Et}_{2} \mathrm{O}\right.$-light petroleum) 0.16 ; $v_{\text {max }} / \mathrm{cm}^{-1} 2976 \mathrm{~m}, 1690 \mathrm{~s}, 1412 \mathrm{~s}, 1179 \mathrm{~m}$ and $1150 \mathrm{~s} ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ (3: 1 mixture of rotational isomers) $8.47(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}(2$ of pyridine $) \mathrm{H}$) and $\mathrm{C}(6$ of pyridine $) \mathrm{H}), 7.54$ and $7.44(1 \mathrm{H}, 2 \times \mathrm{d}$, J 8.0, C $(4$ of pyridine $) \mathrm{H}), 7.25-7.18(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5$ of pyridine) H), 4.38 and $4.20(1 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{C}(1) \mathrm{H}), 3.49-3.40(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}(3) \mathrm{H}_{2}\right), 3.38-3.32(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) \mathrm{H}), 3.15$ and $3.09(1 \mathrm{H}, 2 \times \mathrm{d}$, $\left.J 9.5, \mathrm{C}(3) \mathrm{H}_{2}\right), 2.70-2.67(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(4) \mathrm{H}), 2.23-2.13(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C}(5) \mathrm{H}), 1.84\left(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{C}(7) \mathrm{H}_{2}\right), 1.76(1 \mathrm{H}, \mathrm{d}, J 10.5$, $\left.\mathrm{C}(7) \mathrm{H}_{2}\right), 1.60-1.47(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(5) \mathrm{H})$ and 1.32 and $1.07(9 \mathrm{H}, 2 \times$ $\mathrm{s}, \mathrm{Bu}^{1}$); $\delta_{\mathrm{C}}(100 \mathrm{MHz}$) (3: 1 mixture of rotational isomers observed) $154.0(\mathrm{C}=\mathrm{O}), 150.4$ (C 2 of pyridine), 147.3 (C 6 of pyridine), 137.1 and 135.5 (C 3 of pyridine), 134.6 (C 4 of pyridine), 123.2 (C 5 of pyridine), $78.8\left(\mathrm{CMe}_{3}\right.$), 62.0 and $60.2(\mathrm{Cl})$, 53.4 and 52.6 (C3), 46.5 and 46.4 (C6), 39.8 and 39.2 (C7), 38.0 and 37.5 (C4), 34.1 and 33.2 (C5) and 28.3 and $28.0(3 \times \mathrm{Me})$; m / z (EI) $275\left(\mathrm{M}^{+}, 100 \%\right)$ (Found: $\mathrm{M}^{+}, 274.1684 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires M, 274.1681).

endo-6-(Pyridin-3-yl)-2-azabicyclo[2.2.1]heptane 35

2-Azabicycle 34 ($9 \mathrm{mg}, 0.033 \mathrm{mmol}$) was deprotected following the procedure described for 2. Purification by column chromatography ($1: 15: 85 \mathrm{NH}_{3}-\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 2-azabicycle 35 as a clear colourless oil $(2.1 \mathrm{mg}, 37 \%) ; R_{\mathrm{f}}\left(1: 10: 90 \mathrm{NH}_{3}{ }^{-}\right.$ $\left.\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 0.10 ; v_{\max } / \mathrm{cm}^{-1} 3380 \mathrm{br} \mathrm{s}, 2923 \mathrm{~s}, 1652 \mathrm{~m}$, $1424 \mathrm{~m}, 1261 \mathrm{~m}$ and $1027 \mathrm{~m} ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 8.51(1 \mathrm{H}, \mathrm{d}$, $J 2.0, \mathrm{C}(2$ of pyridine $) \mathrm{H}), 8.44(1 \mathrm{H}, \mathrm{dd}, J 5.0,2.0, \mathrm{C}(6$ of pyridine) H$), 7.81(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{C}(4$ of pyridine $) \mathrm{H}), 7.45(1 \mathrm{H}$, dd, $J 8.0,5.0, \mathrm{C}(5$ of pyridine $) \mathrm{H}), 3.69(1 \mathrm{H}, \mathrm{s}, \mathrm{C}(1) \mathrm{H}), 3.50-$ $3.45(1 \mathrm{H}, \mathrm{m}, \mathrm{C}(6) \mathrm{H}), 2.97-2.94\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}\right.$ of $\left.\mathrm{C}(3) \mathrm{H}_{2}\right), 2.84-$ $2.82\left(1 \mathrm{H}, \mathrm{d}, J 9.5, \mathrm{H}\right.$ of $\left.\mathrm{C}(3) \mathrm{H}_{2}\right), 2.62(1 \mathrm{H}, \mathrm{t}, J 3.5, \mathrm{C}(4) \mathrm{H})$, 2.24-2.16(1 H, m, H of C(5)H2), $1.92(1 \mathrm{H}, \mathrm{d}, J 10.0, \mathrm{H}$ of
$\left.\mathrm{C}(7) \mathrm{H}_{2}\right), 1.83\left(1 \mathrm{H}, \mathrm{dd}, J 10.0,2.0, \mathrm{H}\right.$ of $\left.\mathrm{C}(7) \mathrm{H}_{2}\right)$ and $1.99-1.70$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}$ of $\left.\mathrm{C}(5) \mathrm{H}_{2}\right) ; m / z(\mathrm{CI}) 175\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$.

Acknowledgements

We thank the EPSRC for a Research Grant (GR/K22587: postdoctoral support to R. W.), the EPSRC and Syngenta for a CASE award (to C. R. M.), the EC for a Biomed award (CT97 2317 to K. J. C.) and the BBSRC a Research Grant (86/B11785 to S. W.). We also thank the EPSRC National Mass Spectrometry Service Centre for mass spectra, Professor C. K. Prout (Chemical Crystallography Laboratory, University of Oxford) for assistance with the X-ray structure analysis, Dr J. W. Scheeren (Nijmegen) for spectral data of azatricycle 16, M. J. Dart, P. Curzon and M. J. Buckley (Abbott) for in vivo biological data on 2, and evotec OAI for resolution of 2 by chiral HPLC.

References

1 T. F. Spande, H. M. Garraffo, M. W. Edwards, H. J. C. Yeh, L. Pannell and J. W. Daly, J. Am. Chem. Soc., 1992, 114, 3475; J. W. Daly, H. M. Garraffo, T. F. Spande, M. W. Decker, J. P. Sullivan and M. Williams, Nat. Prod. Rep., 2000, 17, 131.
2 Reviews: C. Szántay, Z. Kardos-Balogh and C. Szántay Jr., in The Alkaloids, ed. G. A. Cordell, Academic Press, San Diego, 1995, vol. 46, pp. 95-125; E. V. Dehmlow, J. Prakt. Chem., 1995, 337, 167; C. Kibayashi and S. Aoyagi, in Studies in Natural Products Chemistry, ed. A.-U. Rahman, Elsevier, Amsterdam, 1997, vol. 19, pp. 66-81; Z. Chen and M. L. Trudell, Chem. Rev., 1996, 96, 1179.
3 (a) M. W. Holladay, M. J. Dart and J. K. Lynch, J. Med. Chem., 1997, 40, 4169; (b) A. W. Bannon, M. W. Decker, M. W. Holladay, P. Curzon, D. Donnelly-Roberts, P. S. Puttfarcken, R. S. Bitner, A. Diaz, A. H. Dickenson, R. D. Porsolt, M. Williams and S. P. Arneric, Science, 1998, 279, 77; (c) Neuronal Nicotinic Receptors: Pharmacology and Therapeutic Opportunities, eds. S. P. Arneric and J. D. Brioni, Wiley-Liss, New York, 1998; (d) M. W. Holladay and M. W. Decker, in Advances in Medicinal Chemistry, eds. A. B. Reitz and S. L. Dax, JAI Press, Connecticut, 2000, vol. 5, pp. 85-113.
4 Preliminary communication: D. M. Hodgson, C. R. Maxwell and I. R. Matthews, Synlett, 1998, 1349.

5 D. Blondet and C. Morin, Heterocycles, 1982, 19, 2155.
6 D. M. Hodgson, C. R. Maxwell and I. R. Matthews, Tetrahedron. Asymmetry, 1999, 10, 1847.
7 J. H. Rigby and F. C. Pigge, Tetrahedron Lett., 1996, 37, 2201.
8 H.-J. Altenbach, D. Constant, H.-D. Martin, B. Mayer, M. Müller and E. Vogel, Chem. Ber., 1991, 124, 791; H.-J. Altenbach, B. Blech, J. A. Marco and E. Vogel, Angew. Chem., Int. Ed. Engl., 1982, 21, 778.

9 G. M. P. Giblin, C. D. Jones and N. S. Simpkins, J. Chem. Soc., Perkin Trans. 1, 1998, 3689; F. Liang, H. A. Navarro, P. Abraham, P. Kotain, Y.-S. Ding, J. Fowler, N. Volkow, M. J. Kuhar and F. I. Carroll, J. Med. Chem., 1997, 40, 2293.

10 L. Dolci, F. Dolle, H. Valette, F. Vaufrey, C. Fuseau, M. Bottlaender and C. Crouzel, Bioorg. Med. Chem., 1999, 7, 467.
11 R. Leung-Toung, Y. Liu, J. M. Muchowski and Y.-L. Wu, J. Org Chem., 1998, 63, 3235.
12 L. E. Brieaddy, F. Liang, P. Abraham, J. R. Lee and F. I. Carroll, Tetrahedron Lett., 1998, 39, 5321; A. Otten, J. C. Namyslo, M. Stoermer and D. E. Kaufmann, Eur. J. Org. Chem., 1998, 1997.
13 A. Kasyan, C. Wagner and M. E. Maier, Tetrahedron, 1998, 54, 8047.

14 P. Caubère and P. Coutrot, in Comprehensive Organic Synthesis, ed. B. M. Trost, Pergamon Press, Oxford, 1991, vol. 8, pp. 835-870.

15 (a) R. W. M. Aben, J. Keijsers, B. Hams, C. G. Kruse and H. W. Scheeren, Tetrahedron Lett., 1994, 35, 1299; (b) H. W. Scheeren, personal communication.
16 J.-P. G. Seerden, M. Th. M. Tulp, H. W. Scheeren and C. G. Kruse, Bioorg. Med. Chem., 1998, 6, 2103
17 D. M. Hodgson, M. W. P. Bebbington and P. Willis, Chem. Comтип., 2001, 889.
18 M. Imuta and H. Ziffer, J. Org. Chem., 1979, 44, 1351.
19 J. K. Crandall and L.-H. Chang, J. Org. Chem., 1967, 32, 435.
20 W. Adam, J. Bialas and L. Hadjiarapoglou, Chem. Ber., 1991, 124, 2377.

21 A. Armstrong, P. A. Clarke and A. Wood, Chem. Commun., 1996, 849 and references cited therin
22 N. S. Zefirov, L. I. Kasyan, L. Y. Gnedenkov, A. S. Shashkov and E. G. Cherepanova, Tetrahedron Lett., 1979, 949

23 J. K. Crandall, J. Org. Chem., 1964, 29, 2830 see also D. M. Hodgson, G. P. Lee, R. E. Marriott, A. J. Thompson, R. Wisedale and J. Witherington, J. Chem. Soc., Perkin Trans. 1, 1998, 2151.
24 D. H. R. Barton and S. W. McCombie, J. Chem. Soc., Perkin Trans. 1, 1975, 1574
25 C. R. Warner, R. J. Strunk and H. G. Kuivila, J. Org. Chem., 1996, 31, 3381; T. A. Halgren, J. L. Firkins, T. A. Fujimoto, H. H. Suzukawa and J. D. Roberts, Proc. Natl. Acad. Sci. USA, 1971, 68, 3216.

26 D. J. Pasto, R. Krasnansky and C. Zercher, J. Org. Chem., 1987, 52, 3062.

27 T. Ohwada, T. Achiwa, I. Okamoto, K. Shudo and K. Yamagauchi, Tetrahedron Lett., 1998, 39, 865.
28 O. Arjona, R. Menchaca and J. Plumet, Tetrahedron, 2000, 56, 3901.
29 S. C. Dolan and J. MacMillan, J. Chem. Soc., Chem. Commun., 1985, 1588 for a related example see C. Zhang and M. L. Trudell, J. Org. Chem., 1996, 61, 7189.

30 K. Okabe and M. Natsume, Chem. Pharm. Bull., 1994, 42, 1432.
31 M.-J. Shiao, L.-M. Shyu, K.-Y. Tarng and Y.-T. Ma, Synth. Coттии., 1990, 20, 2971.
32 S. R. Fletcher, R. Baker, M. S. Chambers, R. H. Herbert, S. C. Hobbs, S. R. Thomas, H. M. Verrier, A. P. Watt and R. G. Ball, J. Org. Chem., 1994, 59, 1771.

33 J. R. Malpass and C. D. Cox, Tetrahedron, 1999, 55, 11879.
34 (a) J. R. Malpass and C. D. Cox, Tetrahedron Lett., 1999, 40, 1419; (b) C. D. Cox, J. R. Malpass, J. Gordon and A. Rosen, J. Chem. Soc., Perkin Trans. 1, 2001, 2372.
35 M. J. Dart, J. T. Wasicak, K. B. Ryther, M. R. Schrimpf, K. H. Kim, D. J. Anderson, J. P. Sullivan and M. D. Meyer, Pharm. Acta Helv, 2000, 74, 115.
36 F. Wang, V. Gerzanich, G. B. Wells, R. Anand, X. Peng, K. Keyser and J. Lindstrom, J. Biol. Chem., 1996, 271, 17656.
37 M. W. Decker, A. W. Bannon, M. J. Buckley, D. J. B. Kim, M. W. Holladay, K. B. Ryther, N.-H. Lin, J. T. Wasicak, M. Williams and S. P. Arneric, Eur. J. Pharm., 1998, 346, 23; M. W. Holladay, J. T. Wasicak, N.-H. Lin, Y. He, K. B. Ryther, A. W. Bannon, M. J. Buckley, D. J. B. Kim, M. W. Decker, D. J. Anderson, J. E. Campbell, T. A. Kuntzweiler, D. L. Donnelly-Roberts, M. Piattoni-Kaplan, C. A. Briggs, M. Williams and S. P. Arneric, J. Med. Chem., 1998, 41, 407.

38 A. W. Bannon, M. W. Decker, P. Curzon, M. J. Buckley, D. J. B. Kim, R. J. Radek, J. K. Lynch, J. T. Wasicak, N.-H. Lin, W. H. Arnold, M. W. Holladay, M. Williams and S. P. Arneric, J. Pharmacol. Exp. Ther., 1998, 285, 787.
39 B. Badio, H. M. Garraffo, T. F. Spande and J. W. Daly, Med. Chem. Res., 1994, 4, 440.
40 A. Diaz and A. H. Dickenson, Pain, 1997, 69, 93.
41 W. R. Brasen and C. R. Hauser, Org. Synth., 1963, Coll. Vol. IV, 508.

42 D. P. Curran and C.-T. Chang, J. Org. Chem., 1989, 54, 3140.
43 O. S. Tee and M. Paventi, J. Am. Chem. Soc., 1982, 104, 4142.
44 O. Magidson and G. Menschikoff, Chem. Ber., 1925, 58, 113.

[^0]: \dagger Electronic supplementary information (ESI) available: details of biological studies. See http://www.rsc.org/suppdata/p1/b1/b107414h/

[^1]: \ddagger The IUPAC name for norbornene is bicyclo[2.2.1]heptene.

[^2]: 9 The numbering in the NMR follows that given in structure 17 in Scheme 6.

